Directional selectivity in panoramic and pantophonic interfaces: Flashdark, Narrowcasting for Stereoscopic Photospherical Cinemagraphy, Akabeko Ensemble

Author(s):  
Michael Cohen ◽  
Rintarō Satō ◽  
Ryota Noji ◽  
Takato Iida ◽  
Yoshiki Tokumitsu
1988 ◽  
Vol 60 (5) ◽  
pp. 1615-1637 ◽  
Author(s):  
K. Hikosaka ◽  
E. Iwai ◽  
H. Saito ◽  
K. Tanaka

1. We examined the sensory properties of cells in the anterior bank of the caudal part of the superior temporal sulcus (caudal STS) in anesthetized, paralyzed monkeys to visual, auditory, and somesthetic stimuli. 2. In the anterior bank of the caudal STS, there were three regions distinguishable from each other and also from the middle temporal area (MT) in the floor of the STS and area Tpt in the superior temporal gyrus. The three regions were located approximately in the respective inner, middle, and outer thirds of the anterior bank of the caudal STS. These three regions are referred to, from the inner to the outer, as the medial superior temporal region (MST), the mostly unresponsive region, and the caudal STS polysensory region (cSTP), respectively. 3. The extent of MST and its response properties agreed with previous studies. Cells in MST responded exclusively to visual stimuli, had large visual receptive fields (RFs), and nearly all (91%) showed directional selectivity. 4. In the mostly unresponsive region, three quarters of cells were unresponsive to any stimulus used in this study. A quarter of the cells responded to only visual stimuli and most did not show directional selectivity for moving stimuli. Several directionally selective cells responded to movements of three-dimensional objects, but not of projected stimuli. 5. The response properties of cells in the superficial cortex of the caudal superior temporal gyrus, a part of area Tpt, external to cSTP were different from those of cells in the three regions in the anterior bank of the STS. Cells in Tpt were exclusively auditory, and had much larger auditory RFs (mean = 271 degrees) than those of acoustically-driven cSTP cells (mean = 138 degrees). 6. The cSTP contained unimodal visual, auditory, and somesthetic cells as well as multimodal cells of two or all three modalities. The sensory properties of cSTP cells were as follows. 1) Out of 200 cells recorded, 102 (51%) cells were unimodal (59 visual, 33 auditory, and 10 somesthetic), 36 (18%) cells were bimodal (21 visual+auditory, 7 visual+somesthetic, and 8 auditory+somesthetic), and four (2%) cells were trimodal. Visual and auditory responses were more frequent than somesthetic responses: the ratio of the population of cells driven by visual: auditory: somesthetic stimuli was 3:2:1. 2) Visual RFs were large (mean diameter, 59 degrees), but two-thirds were limited to the contralateral visual hemifield. About half the cells showed directional selectivity for moving visual stimuli. None showed selectivity for particular visual shapes.(ABSTRACT TRUNCATED AT 400 WORDS)


ChemInform ◽  
2015 ◽  
Vol 46 (36) ◽  
pp. no-no
Author(s):  
Tamara N. Steinhauer ◽  
Daniel S. Laengle ◽  
Christopher Meier ◽  
Ulrich Girreser ◽  
Lars Stenzel ◽  
...  

2006 ◽  
Vol 96 (5) ◽  
pp. 2319-2326 ◽  
Author(s):  
J. U. Ramcharitar ◽  
E. W. Tan ◽  
E. S. Fortune

Eigenmannia, a genus of weakly electric fish, exhibits a specialized behavior known as the jamming avoidance response (JAR). The JAR results in a categorical difference between Eigenmannia that are in groups of conspecifics and those that are alone. Fish in groups exhibit the JAR behavior and thereby experience ongoing, global synchronous 20- to 50-Hz electrosensory oscillations, whereas solitary fish do not. Although previous work has shown that these ongoing signals do not significantly degrade electrosensory behavior, these oscillations nevertheless elicit short-term synaptic depression in midbrain circuits. Because short-term synaptic depression can have profound effects on the transmission of information through synapses, we examined the differences in intracellularly recorded responses of midbrain neurons in awake, behaving fish to moving electrosensory images under electrosensory conditions that mimic solitary fish and fish in groups. In solitary conditions, moving objects elicited Gaussian or sinusoidal postsynaptic potentials (PSPs) that commonly exhibited preferential responses to a direction of motion. Surprisingly, when the same stimulus was presented in the presence of the global oscillations, directional selectivity was increased in all neurons tested. The magnitudes of the differences in PSP amplitude for preferred and nonpreferred directions were correlated with a measure of short-term synaptic depression in both conditions. The electrosensory consequences of the JAR appear to result in an enhancement of the representation of direction of motion in midbrain neurons. The data also support a role for short-term synaptic depression in the generation and modulation of directional responses.


1985 ◽  
Vol 16 (4) ◽  
pp. 401-407
Author(s):  
D. J. Stabinite ◽  
S. V. Alekseenko ◽  
D. J. Kirvelis

1997 ◽  
Vol 14 (5) ◽  
pp. 939-948 ◽  
Author(s):  
Stephen C. Massey ◽  
David M. Linn ◽  
Christopher A. Kittila ◽  
Wajid Mirza

AbstractGABA is a major inhibitory neurotransmitter in the mammalian retina and it acts at many different sites via a variety of postsynaptic receptors. These include GABAA receptors and bicuculline-resistant GABAC receptors. The release of acetylcholine (ACh) is inhibited by GABA and strongly potentiated by GABA antagonists. In addition, GABA appears to mediate the null inhibition which is responsible for the mechanism of directional selectivity in certain ganglion cells. We have used these two well-known examples of GABA inhibition to compare three GABA antagonists and assess the contributions of GABAA and GABAC receptors. All three GABA antagonists stimulated ACh release by as much as ten-fold. By this measure, the ED50s for SR-95531, bicuculline, and picrotoxin were 0.8, 7.0, and 14 μM, respectively. Muscimol, a potent GABAA agonist, blocked the effects of SR-95531 and bicuculline, but not picrotoxin. This indicates that SR-95531 and bicuculline are competitive antagonists at the GABAA receptor, while picrotoxin blocks GABAA responses by acting at a different, nonreceptor site such as the chloride channel. In the presence of a saturating dose of SR-95531 to completely block GABAA receptors, picrotoxin caused a further increase in the release of ACh. This indicates that picrotoxin potentiates ACh release by a mechanism in addition to the block of GABAA responses, possibly by also blocking GABAC receptors, which have been associated with bipolar cells. All three GABA antagonists abolished directionally selective responses from ON/OFF directional-selective (DS) ganglion cells. In this system, the ED50s for SR-95531, bicuculline, and picrotoxin were 0.7 μM, 8 μM, and 94.6 μM, respectively. The results with SR-95531 and bicuculline indicate that GABAA receptors mediate the inhibition responsible for directional selectivity. The addition of picrotoxin to a high dose of SR-95531 caused no further increase in firing rate. The comparatively high dose required for picrotoxin also suggests that GABAC receptors do not contribute to directional selectivity. This in turn suggests that feedforward GABAA inhibition, as opposed to feedback at bipolar terminals, is responsible for the null inhibition underlying directional selectivity.


A specific synaptic interaction is proposed as the mechanism underlying the directional selectivity to motion of several nervous cells. It is shown that the hypothesis is consistent with previous behavioural and physiological studies of the motion detection process.


2003 ◽  
pp. 118-119
Author(s):  
Amane Koizumi ◽  
Misako Takayasu ◽  
Hideki Takayasu ◽  
Yutaka Shiraishi ◽  
Akimichi Kaneko

Sign in / Sign up

Export Citation Format

Share Document