Air temperature estimation with MODIS data over the Northern Tibetan Plateau

2017 ◽  
Vol 34 (5) ◽  
pp. 650-662 ◽  
Author(s):  
Fangfang Huang ◽  
Weiqiang Ma ◽  
Binbin Wang ◽  
Zeyong Hu ◽  
Yaoming Ma ◽  
...  
2018 ◽  
Vol 64 (243) ◽  
pp. 132-147 ◽  
Author(s):  
HONGBO ZHANG ◽  
FAN ZHANG ◽  
GUOQING ZHANG ◽  
YAOMING MA ◽  
KUN YANG ◽  
...  

ABSTRACTThe MODerate resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) data have been widely used for air temperature estimation in mountainous regions where station observations are sparse. However, the performance of MODIS LST in high-elevation glacierized areas remains unclear. This study investigates air temperature estimation in glacierized areas based on ground observations at four glaciers across the Tibetan Plateau. Before being used to estimate the air temperature, MODIS LST data are evaluated at two of the glaciers, which indicates that MODIS night-time LST is more reliable than MODIS daytime LST data. Then, linear models based on each of the individual MODIS LST products from two platforms (Terra and Aqua) and two overpasses (night-time and daytime) are built to estimate daily mean, minimum and maximum air temperatures in glacierized areas. Regional glacier surface (RGS) models (mean /-mean-square differences: 3.3, 3.0 and 4.8°C for daily mean, minimum and maximum air temperatures, respectively) show higher accuracy than local non-glacier surface models (mean root-mean-square differences: 4.2, 4.7 and 5.7°C). In addition, the RGS models based on MODIS night-time LST perform better to estimate daily mean, minimum and maximum air temperatures than using temperature lapse rate derived from local stations.


2006 ◽  
Vol 43 ◽  
pp. 29-33 ◽  
Author(s):  
Ninglian Wang ◽  
Tandong Yao ◽  
L.G. Thompson ◽  
M.E. Davis

AbstractIn this paper, the ratio of dust layer thickness to ice thickness, i.e. the dust ratio, is used as a proxy for dust event frequency in the Malan ice core from the northern Tibetan Plateau. We reconstructed a ∼900 year record that reveals that the 1770s–1880s was a prolonged period of high dust ratios, which indicates that dust events occurred frequently from the late 18th century through the 19th century. Statistical analysis of the variations in the dust ratios and δ18O (which is a good proxy for air temperature) in the Malan ice core shows that there is a strong negative correlation between them. This suggests that dust events occur more frequently in cold periods than in warm periods.


Sign in / Sign up

Export Citation Format

Share Document