Anomalous western Pacific subtropical high during El Niño developing summer in comparison with decaying summer

2018 ◽  
Vol 35 (3) ◽  
pp. 360-367 ◽  
Author(s):  
Feng Xue ◽  
Xiao Dong ◽  
Fangxing Fan
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Wan-Jiao Song ◽  
Qi-Guang Wang

The summer precipitation produced by the East Asian summer monsoon (EASM) is significantly affecting agriculture and socioeconomics. Based on the Precipitation Reconstruction dataset in East China from 1950 to 2017, we investigate the spatiotemporal variations of summer precipitation, influencing environmental factors and their relation with the EASM and the Pacific Decadal Oscillation (PDO) in both central Pacific (CP) El Niño developing and decaying years. Results indicate the following: (1) The evolutions of CP El Niño events modulate the summer precipitation anomalies in East China. In the cool PDO phase, CP El Niño causes enhanced precipitation anomalies in the decaying years but less precipitation anomalies in the developing years, and vice versa for the warm PDO phase. (2) Atmospheric circulation anomalies drive the moisture transportation and combine the motion of western Pacific subtropical high resulting in the variation of precipitation patterns. Anomalous cyclone over the western North Pacific and the sustained Western Pacific Subtropical High (WPSH) are favorable for the increment of summer precipitation. (3) The different CP El Niño-EASM relationship is caused by the influences of PDO on the evolution of CP El Niño. CP El Niño develops slowly (decays rapidly) and is associated with rapidly developing (slowly decaying) anomalous warming in the north Indian Ocean during the developing (decaying) years.


2018 ◽  
Vol 246 ◽  
pp. 01074
Author(s):  
Zujian Zou ◽  
Yubin He

The Dadu River Basin is located in the transitional zone between the Qinghai-Tibet Plateau and the Sichuan Basin. It is alternately affected by various weather systems such as the western Pacific subtropical high, the Qinghai-Tibet high (anti-cyclone), the southwest warm and humid air current, and the southeast monsoon. The western Pacific subtropical high is one of the main influencing factors of rainfall runoff in the basin. During the El Niño period, the western Pacific subtropical high moved eastward and the position was southward. The warm and humid airflow and the southeast monsoon northward changed, and the rainfall runoff in the Dadu River Basin changed.By analyzing the development of the El Niño phenomenon, Divide an El Niño process into different stages of occurrence, development, and end. Combining the characteristics of the Dadu River runoff in each stage, Studying the runoff situation of the Dadu River Basin under different strengths and weaknesses of the El Niño phenomenon. Using the correlation method to establish a model of the relationship between the abundance of the Dadu River Basin and the El Niño strength and weakness. Providing new ideas and new methods for the accurate prediction of the incoming water of the Dadu River under the abnormal climatic conditions of El Niño. It provides technical support for reservoir dispatching, flood control dispatching and economic dispatching of cascade hydropower stations, and provides experience for other river basins to cope with complex climate situations and improve water regime forecasting levels.


2019 ◽  
Vol 46 (2) ◽  
pp. 953-962 ◽  
Author(s):  
Mengyan Chen ◽  
Jin‐Yi Yu ◽  
Xin Wang ◽  
Wenping Jiang

2020 ◽  
Vol 33 (1) ◽  
pp. 229-241 ◽  
Author(s):  
Zongci Huang ◽  
Wenjun Zhang ◽  
Xin Geng ◽  
Fei-Fei Jin

AbstractThe boreal summer western Pacific subtropical high (WPSH) exhibits a remarkable decadal shift in its spatial pattern and periodicity around the late 1990s. In the former period, the WPSH is primarily characterized by a large-scale uniform pattern over Asia and its surrounding area with an oscillating period of ~4–5 yr. However, the WPSH-related atmospheric circulations shift to a dipole structure and oscillate at ~2–3 yr in the recent period. We found that this decadal shift is largely contributed by the ENSO regime change. During the former period, the tropical Pacific was dominated by the conventional eastern Pacific (EP) El Niño–Southern Oscillation (ENSO) with an oscillating period of ~4–5 yr. Strong anticyclone anomalies usually are maintained over the western North Pacific (WNP) during the EP El Niño decaying summer, accounting for most of the WPSH temporal and spatial variability. In contrast, the recent period features much more frequent occurrence of central Pacific (CP) El Niño events in the tropical Pacific with a ~2–3-yr oscillating period. A dipole structure in the WNP and Indian Ocean is evident during both developing and decaying summers of CP El Niño, consistent with the WPSH leading mode after the late 1990s. The results have important implications for seasonal prediction of the WPSH and associated Asian summer climate anomalies.


2015 ◽  
Vol 28 (19) ◽  
pp. 7561-7575 ◽  
Author(s):  
Yoo-Geun Ham ◽  
Yerim Jeong ◽  
Jong-Seong Kug

Abstract This study uses archives from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to investigate changes in independency between two types of El Niño events caused by greenhouse warming. In the observations, the independency between cold tongue (CT) and warm pool (WP) El Niño events is distinctively increased in recent decades. The simulated changes in independency between the two types of El Niño events according to the CMIP5 models are quite diverse, although the observed features are simulated to some extent in several climate models. It is found that the climatological change after global warming is an essential factor in determining the changes in independency between the two types of El Niño events. For example, the independency between these events is increased after global warming when the climatological precipitation is increased mainly over the equatorial central Pacific. This climatological precipitation increase extends convective response to the east, particularly for CT El Niño events, which leads to greater differences in the spatial pattern between the two types of El Niño events to increase the El Niño independency. On the contrary, in models with decreased independency between the two types of El Niño events after global warming, climatological precipitation is increased mostly over the western Pacific. This confines the atmospheric response to the western Pacific in both El Niño events; therefore, the similarity between them is increased after global warming. In addition to the changes in the climatological state after global warming, a possible connection of the changes in the El Niño independency with the historical mean state is discussed in this paper.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 851
Author(s):  
Gen Li ◽  
Zhiyuan Zhang ◽  
Bo Lu

Under increased greenhouse gas (GHG) forcing, climate models tend to project a warmer sea surface temperature in the eastern equatorial Pacific than in the western equatorial Pacific. This El Niño-like warming pattern may induce an increase in the projected occurrence frequency of extreme El Niño events. The current models, however, commonly suffer from an excessive westward extension of the equatorial Pacific cold tongue accompanied by insufficient equatorial western Pacific precipitation. By comparing the Representative Concentration Pathway (RCP) 8.5 experiments with the historical simulations based on the Coupled Model Intercomparison Project phase 5 (CMIP5), a “present–future” relationship among climate models was identified: models with insufficient equatorial western Pacific precipitation error would have a weaker mean El Niño-like warming pattern as well as a lower increase in the frequency of extreme El Niño events under increased GHG forcing. Using this “present–future” relationship and the observed precipitation in the equatorial western Pacific, this study calibrated the climate projections in the tropical Pacific. The corrected projections showed a stronger El Niño-like pattern of mean changes in the future, consistent with our previous study. In particular, the projected increased occurrence of extreme El Niño events under RCP 8.5 forcing are underestimated by 30–35% in the CMIP5 multi-model ensemble before the corrections. This implies an increased risk of the El Niño-related weather and climate disasters in the future.


2017 ◽  
Vol 28 (1) ◽  
pp. 3-14 ◽  
Author(s):  
Mei Huang ◽  
Man Hao ◽  
Shaoqiang Wang ◽  
Li Dan ◽  
Fengxue Gu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document