How well can the observed Arctic sea ice summer retreat and winter advance be represented in the NCEP Climate Forecast System version 2?

2016 ◽  
Vol 49 (5-6) ◽  
pp. 1651-1663 ◽  
Author(s):  
Thomas W. Collow ◽  
Wanqiu Wang ◽  
Arun Kumar ◽  
Jinlun Zhang
2021 ◽  
Vol 40 (10) ◽  
pp. 65-75
Author(s):  
Qi Shu ◽  
Fangli Qiao ◽  
Jiping Liu ◽  
Zhenya Song ◽  
Zhiqiang Chen ◽  
...  

2017 ◽  
Vol 30 (21) ◽  
pp. 8429-8446 ◽  
Author(s):  
Zhiqiang Chen ◽  
Jiping Liu ◽  
Mirong Song ◽  
Qinghua Yang ◽  
Shiming Xu

Here sea ice concentration derived from the Special Sensor Microwave Imager/Sounder and thickness derived from the Soil Moisture and Ocean Salinity and CryoSat-2 satellites are assimilated in the National Centers for Environmental Prediction Climate Forecast System using a localized error subspace transform ensemble Kalman filter (LESTKF). Three ensemble-based hindcasts are conducted to examine impacts of the assimilation on Arctic sea ice prediction, including CTL (without any assimilation), LESTKF-1 (with initial sea ice assimilation only), and LESTKF-E5 (with every 5-day sea ice assimilation). Assessment with the assimilated satellite products and independent sea ice thickness datasets shows that assimilating sea ice concentration and thickness leads to improved Arctic sea ice prediction. LESTKF-1 improves sea ice forecast initially. The initial improvement gradually diminishes after ~3-week integration for sea ice extent but remains quite steady through the integration for sea ice thickness. Large biases in both the ice extent and thickness in CTL are remarkably reduced through the hindcast in LESTKF-E5. Additional numerical experiments suggest that the hindcast with sea ice thickness assimilation dramatically reduces systematic bias in the predicted ice thickness compared with sea ice concentration assimilation only or without any assimilation, which also benefits the prediction of sea ice extent and concentration due to their covariability. Hence, the corrected state of sea ice thickness would aid in the forecast procedure. Increasing the number of ensemble members or extending the integration period to generate estimates of initial model states and uncertainties seems to have small impacts on sea ice prediction relative to LESTKF-E5.


2015 ◽  
Vol 143 (11) ◽  
pp. 4618-4630 ◽  
Author(s):  
Thomas W. Collow ◽  
Wanqiu Wang ◽  
Arun Kumar ◽  
Jinlun Zhang

Abstract Because sea ice thickness is known to influence future patterns of sea ice concentration, it is likely that an improved initialization of sea ice thickness in a coupled ocean–atmosphere model would improve Arctic sea ice cover forecasts. Here, two sea ice thickness datasets as possible candidates for forecast initialization were investigated: the Climate Forecast System Reanalysis (CFSR) and the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS). Using Ice, Cloud, and Land Elevation Satellite (ICESat) data, it was shown that the PIOMAS dataset had a more realistic representation of sea ice thickness than CFSR. Subsequently, both March CFSR and PIOMAS sea ice thicknesses were used to initialize hindcasts using the Climate Forecast System, version 2 (CFSv2), model. A second set of model runs was also done in which the original model physics were modified to more physically reasonable settings—namely, increasing the number of marine stratus clouds in the Arctic region and enabling realistic representation of the ice–ocean heat flux. Hindcasts were evaluated using sea ice concentration observations from the National Aeronautics and Space Administration (NASA) Team and Bootstrap algorithms. Results show that using PIOMAS initial sea ice thickness in addition to the physics modifications yielded significant improvement in the prediction of September Arctic sea ice extent along with increased interannual predictive skill. Significant local improvements in sea ice concentration were also seen in distinct regions for the change to PIOMAS initial thickness or the physics adjustments, with the most improvement occurring when these changes were applied concurrently.


2013 ◽  
Vol 118 (3) ◽  
pp. 1312-1328 ◽  
Author(s):  
Xingwen Jiang ◽  
Song Yang ◽  
Yueqing Li ◽  
Arun Kumar ◽  
Wanqiu Wang ◽  
...  

2013 ◽  
Vol 42 (7-8) ◽  
pp. 1925-1947 ◽  
Author(s):  
J. S. Chowdary ◽  
H. S. Chaudhari ◽  
C. Gnanaseelan ◽  
Anant Parekh ◽  
A. Suryachandra Rao ◽  
...  

2015 ◽  
Vol 143 (11) ◽  
pp. 4660-4677 ◽  
Author(s):  
Stephen G. Penny ◽  
David W. Behringer ◽  
James A. Carton ◽  
Eugenia Kalnay

Abstract Seasonal forecasting with a coupled model requires accurate initial conditions for the ocean. A hybrid data assimilation has been implemented within the National Centers for Environmental Prediction (NCEP) Global Ocean Data Assimilation System (GODAS) as a future replacement of the operational three-dimensional variational data assimilation (3DVar) method. This Hybrid-GODAS provides improved representation of model uncertainties by using a combination of dynamic and static background error covariances, and by using an ensemble forced by different realizations of atmospheric surface conditions. An observing system simulation experiment (OSSE) is presented spanning January 1991 to January 1999, with a bias imposed on the surface forcing conditions to emulate an imperfect model. The OSSE compares the 3DVar used by the NCEP Climate Forecast System (CFSv2) with the new hybrid, using simulated in situ ocean observations corresponding to those used for the NCEP Climate Forecast System Reanalysis (CFSR). The Hybrid-GODAS reduces errors for all prognostic model variables over the majority of the experiment duration, both globally and regionally. Compared to an ensemble Kalman filter (EnKF) used alone, the hybrid further reduces errors in the tropical Pacific. The hybrid eliminates growth in biases of temperature and salinity present in the EnKF and 3DVar, respectively. A preliminary reanalysis using real data shows that reductions in errors and biases are qualitatively similar to the results from the OSSE. The Hybrid-GODAS is currently being implemented as the ocean component in a prototype next-generation CFSv3, and will be used in studies by the Climate Prediction Center to evaluate impacts on ENSO prediction.


Sign in / Sign up

Export Citation Format

Share Document