Reconstructing the western boundary variability of the Western Pacific Subtropical High over the past 200 years via Chinese cave oxygen isotope records

2018 ◽  
Vol 52 (5-6) ◽  
pp. 3741-3757 ◽  
Author(s):  
Jingyao Zhao ◽  
Hai Cheng ◽  
Yan Yang ◽  
Liangcheng Tan ◽  
Christoph Spötl ◽  
...  
2018 ◽  
Vol 246 ◽  
pp. 01074
Author(s):  
Zujian Zou ◽  
Yubin He

The Dadu River Basin is located in the transitional zone between the Qinghai-Tibet Plateau and the Sichuan Basin. It is alternately affected by various weather systems such as the western Pacific subtropical high, the Qinghai-Tibet high (anti-cyclone), the southwest warm and humid air current, and the southeast monsoon. The western Pacific subtropical high is one of the main influencing factors of rainfall runoff in the basin. During the El Niño period, the western Pacific subtropical high moved eastward and the position was southward. The warm and humid airflow and the southeast monsoon northward changed, and the rainfall runoff in the Dadu River Basin changed.By analyzing the development of the El Niño phenomenon, Divide an El Niño process into different stages of occurrence, development, and end. Combining the characteristics of the Dadu River runoff in each stage, Studying the runoff situation of the Dadu River Basin under different strengths and weaknesses of the El Niño phenomenon. Using the correlation method to establish a model of the relationship between the abundance of the Dadu River Basin and the El Niño strength and weakness. Providing new ideas and new methods for the accurate prediction of the incoming water of the Dadu River under the abnormal climatic conditions of El Niño. It provides technical support for reservoir dispatching, flood control dispatching and economic dispatching of cascade hydropower stations, and provides experience for other river basins to cope with complex climate situations and improve water regime forecasting levels.


2019 ◽  
Vol 46 (2) ◽  
pp. 953-962 ◽  
Author(s):  
Mengyan Chen ◽  
Jin‐Yi Yu ◽  
Xin Wang ◽  
Wenping Jiang

2009 ◽  
Vol 22 (8) ◽  
pp. 2199-2215 ◽  
Author(s):  
Tianjun Zhou ◽  
Rucong Yu ◽  
Jie Zhang ◽  
Helge Drange ◽  
Christophe Cassou ◽  
...  

Abstract The western Pacific subtropical high (WPSH) is closely related to Asian climate. Previous examination of changes in the WPSH found a westward extension since the late 1970s, which has contributed to the interdecadal transition of East Asian climate. The reason for the westward extension is unknown, however. The present study suggests that this significant change of WPSH is partly due to the atmosphere’s response to the observed Indian Ocean–western Pacific (IWP) warming. Coordinated by a European Union’s Sixth Framework Programme, Understanding the Dynamics of the Coupled Climate System (DYNAMITE), five AGCMs were forced by identical idealized sea surface temperature patterns representative of the IWP warming and cooling. The results of these numerical experiments suggest that the negative heating in the central and eastern tropical Pacific and increased convective heating in the equatorial Indian Ocean/Maritime Continent associated with IWP warming are in favor of the westward extension of WPSH. The SST changes in IWP influences the Walker circulation, with a subsequent reduction of convections in the tropical central and eastern Pacific, which then forces an ENSO/Gill-type response that modulates the WPSH. The monsoon diabatic heating mechanism proposed by Rodwell and Hoskins plays a secondary reinforcing role in the westward extension of WPSH. The low-level equatorial flank of WPSH is interpreted as a Kelvin response to monsoon condensational heating, while the intensified poleward flow along the western flank of WPSH is in accord with Sverdrup vorticity balance. The IWP warming has led to an expansion of the South Asian high in the upper troposphere, as seen in the reanalysis.


Sign in / Sign up

Export Citation Format

Share Document