equatorial indian ocean
Recently Published Documents


TOTAL DOCUMENTS

397
(FIVE YEARS 101)

H-INDEX

48
(FIVE YEARS 4)

MAUSAM ◽  
2022 ◽  
Vol 52 (3) ◽  
pp. 527-540
Author(s):  
M. RAJEEVAN ◽  
R. K. PRASAD ◽  
U. S. DE

Surface cloud data based on synoptic observations made by Voluntary Observing Ships (VOS) during the period 1951-98 were used to prepare the seasonal and annual cloud climatology of the Indian Ocean. The analysis has been carried out by separating the long-term trends, decadal and inter-annual components from the monthly cloud anomaly time series at each 5° × 5° grids.   Maximum zone of total and low cloud cover shifts from equator to northern parts of India during the monsoon season. During the monsoon season (June-September), maximum total cloud cover exceeding 70% and low cloud cover exceeding 50% are observed over north Bay of Bengal. Maximum standard deviation of total and low cloud cover is observed near the equator and in the southern hemisphere. Both total and low cloud cover over Arabian Sea and the equatorial Indian Ocean are observed to decrease during the ENSO events. However, cloud cover over Bay of Bengal is not modulated by the ENSO events. On inter-decadal scale, low cloud cover shifted from a "low regime" to a "high regime" after 1980 which may be associated with the corresponding inter-decadal changes of sea surface temperatures over north Indian Ocean observed during the late 1970s.


Author(s):  
Neethu Chacko ◽  
M M Ali

This study examines the effect of surface currents on the bulk algorithm calculation of wind stress estimated using the scatterometer data during 2007-2020 in the Indian Ocean. In the study region as a whole the wind stress decreased by 5.4% by including currents into the wind stress equation. The most significant reduction in the wind stress is found along the most energetic regions with strong currents such as Somali Current, Equatorial Jets and Aghulhas retroflection. A highest reduction of 11.5% is observed along the equator where the Equatorial Jets prevail. A sensitivity analysis has been carried out for the study region and for different seasons to assess the relative impact of winds and currents in the estimation of wind stress by changing the winds while keeping the currents constants and vice versa. The inclusion of currents decreased the wind stress and this decrease is prominent when the currents are stronger. This study showed that equatorial Indian Ocean is the most sensitive region where the current can impact on wind stress estimation. The results showed that uncertainties in the wind stress estimations are quite large at regional levels and hence better representation of wind stress incorporating ocean currents should be considered in the ocean/climatic models for accurate air-sea interaction studies.


MAUSAM ◽  
2021 ◽  
Vol 44 (1) ◽  
pp. 69-76
Author(s):  
T. K. BALAKRISHNAN ◽  
A. K. JASWAL ◽  
S.S.. SINGH ◽  
H. N. SRIVASTAVA

The spatial distribution and temporal variation of the monthly mean SSTA over the Arabian Sea, Bay of Bengal and the north Indian Ocean were investigated for a set of contrasting years of monsoon over the period 1961-80 for months April through July using Empirical Orthogonal Function (EOF) technique with a view to identify regions that are significantly related to the monsoon rainfall. Over 75% of the total variance is, explained by the first mode EOF. SSTA over the north and northeast Arabian Sea during pre-monsoon months were found to be possible indicators of the ensuing monsoon activity. The higher eigen vectors in May over northeast Arabian Sea may signal good monsoon and vice versa. In June there is a marked contrast in the distribution of SST over the Arabian Sea between the two sets of the years the eastern Arabian Sea IS warmer for the deficient monsoon years while the entire Arabian Sea except over the extreme north Arabian Sea is cool during good monsoon years. There is formation of SSTA over the equatorial Indian Ocean area close to Indonesian island commencing from May which is more marked in June and is positively correlated with seasonal rainfall activity over India.  


Author(s):  
Shraddha Yadav

Abstract: Rainfall variability has a substantial impact on water supplies, agricultural output, and, as a result, the economy. It examines the historical spatiotemporal variability and trend of rainfall on Jharkhand's annual and seasonal time series state over a 60-year period (1954–2013). The goal of this study was to find trends in long and short-term changes in rainfall amounts in the Jharkhand region at various spatial scales. With the help of the wavelet technique, we were able to determine the periodicity of rainfall over time and identify active and break days in the monsoon season. When the OLR positive anomaly increases, rainfall decreases (Break days), and when the OLR negative anomaly increases, rainfall increases (Active days). The Indian summer monsoon extreme is also strongly linked to the Equatorial Indian Ocean Oscillation (EQUINOO), which is based on surface zonal wind across the central equatorial Indian Ocean. Because the Bay of Bengal is next to Jharkhand, local disturbances or cyclonic events are also discovered and their impact on rainfall is investigated. Keywords: Rainfall, ENSO, Wavelet Transform, Active and Break days, Cyclone, Climate Change.


MAUSAM ◽  
2021 ◽  
Vol 52 (1) ◽  
pp. 151-162
Author(s):  
DAVID BACHIOCHI ◽  
BHASKAR JHA ◽  
T.N. KRISHNAMURTI

The results from an atmospheric modeling study using the Florida State University Global Spectral Model indicate that, in years such as 1997 when the Indian Ocean SSTs are large, the Indian monsoon exhibits a typical behaviour. During that year, an extended shift of the tropical convergence zone towards the north played a role in the regional Hadley cell anomalies. The local warm boundary conditions in the northwestern Indian Ocean aided the high rainfall anomaly in Western India during the model simulations. The upper level structure, exhibited in terms of the global velocity potential is slightly shifted east for 1997, but with the correct sign. This structure shows regions of convergence over Indonesia where severe drought had occurred. The performance of the model rainfall over the equatorial Indian Ocean was uncanny for most seasons studied. Overall, the model performed best over the oceanic regions.


MAUSAM ◽  
2021 ◽  
Vol 42 (2) ◽  
pp. 131-138
Author(s):  
R.R. RAO ◽  
K. D. K. M. SARMA ◽  
BASIL MATHEW

The hydrographic and BT data sets collected in the upper 200 m water column along three zonal transects (2°N, equator and 2°S) in the equatorial Indian Ocean (between 70oE and 90OE) made by USSR ships during the field observational programme of Monsoon-77 (end May/early June 1977) showed prominent eastward depression of thermocline in association with the surface easterly equatorial jet. In the central indian. Ocean, the mixed layer cooling and deepening rates were weak with the. Onset and sway of the summer monsoon over a two month period from end May 1977, but relatively significant changes were noticed in the salinity of the upper 200 m water column. In this region, on a synoptic scale a mild increase in SST is in accor4ance with the net surface heat gain during the last week of July 1977.  


2021 ◽  
Author(s):  
Claire Martinot ◽  
Clara T Bolton ◽  
Anta-Clarisse Sarr ◽  
Yannick Donnadieu ◽  
Marta Garcia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document