Intraseasonal responses of sea surface and deep oceanic temperature anomalies in the northern Indian Ocean–western Pacific to the 30–60-day boreal summer atmospheric intraseasonal oscillation

2019 ◽  
Vol 53 (7-8) ◽  
pp. 4539-4552
Author(s):  
Jiangyu Mao ◽  
Ming Wang
2007 ◽  
Vol 135 (5) ◽  
pp. 1807-1827 ◽  
Author(s):  
Kyong-Hwan Seo ◽  
Jae-Kyung E. Schemm ◽  
Wanqiu Wang ◽  
Arun Kumar

Abstract Observational evidence has indicated the important role of the interaction of the atmosphere with the sea surface in the development and maintenance of the tropical intraseasonal oscillation (ISO). However, improvements in ISO simulations with fully coupled atmosphere–ocean general circulation models are limited and model dependent. This study further examines the effect of air–sea coupling and the basic-state sea surface temperature (SST) associated with the boreal summer intraseasonal oscillation (BSISO) in a 21-yr free run with the recently developed NCEP coupled Climate Forecast System (CFS) model. For this, the CFS run is compared with an Atmospheric Model Intercomparison Project–type long-term simulation forced by prescribed SST in the NCEP Global Forecast System (GFS) model and flux-corrected version of CFS (referred to as CFSA). The GFS run simulates significantly unorganized BSISO convection anomalies, which exhibit an erroneous standing oscillation. The CFS run with interactive air–sea coupling has limited improvements, including the generation of intraseasonal SST variation preceding the convection anomaly by ∼10 days. However, this simulation still does not show the observed continuous northward propagation over the Indian Ocean due to a cold model bias. The CFSA run removes the cold bias in the Indian Ocean and the simulation of the development and propagation of BSISO anomalies are significantly improved. Enhanced and suppressed convection anomalies exhibit the observed quadrupole-like configuration, and phase relationships between precipitation and surface dynamic and thermodynamic variables for the northward propagation are shown to be coherent and consistent with the observations. It is shown that the surface meridional moisture convergence is an important factor for the northward propagation of the BSISO. On the other hand, both the GFS and CFS runs do not realistically simulate an eastward-propagating equatorial mode. The CFSA run produces a more realistic eastward-propagation mode only over the Indian Ocean and Java Sea due to the improved mean state in SST, low-level winds, and vertical wind shear. Reasons for the failure of farther eastward propagation into the west Pacific in CFSA are discussed. This study reconfirms the significance of air–sea interactions. More importantly, however, the results suggest that in order for the influence of the coupled air–sea interaction to be properly communicated, the mean state SST in the coupled model should be reasonably simulated. This is because the basic-state SST itself acts to sustain BSISO convection and it makes the large-scale dynamical environment (i.e., easterly vertical wind shear or low-level westerly zonal wind) more favorable for the propagation of the moist Rossby–Kelvin wave packet.


2011 ◽  
Vol 38 (9-10) ◽  
pp. 1901-1916 ◽  
Author(s):  
J. Vialard ◽  
A. Jayakumar ◽  
C. Gnanaseelan ◽  
M. Lengaigne ◽  
D. Sengupta ◽  
...  

2021 ◽  
pp. 1-39
Author(s):  
Lei Zhang ◽  
Weiqing Han ◽  
Zeng-Zhen Hu

AbstractAn unprecedented extreme positive Indian Ocean Dipole event (pIOD) occurred in 2019, which has caused widespread disastrous impacts on countries bordering the Indian Ocean, including the East African floods and vast bushfires in Australia. Here we investigate the causes for the 2019 pIOD by analyzing multiple observational datasets and performing numerical model experiments. We find that the 2019 pIOD is triggered in May by easterly wind bursts over the tropical Indian Ocean associated with the dry phase of the boreal summer intraseasonal oscillation, and sustained by the local atmosphere-ocean interaction thereafter. During September-November, warm sea surface temperature anomalies (SSTA) in the central-western tropical Pacific further enhance the Indian Ocean’s easterly winds, bringing the pIOD to an extreme magnitude. The central-western tropical Pacific warm SSTA is strengthened by two consecutive Madden Julian Oscillation (MJO) events that originate from the tropical Indian Ocean. Our results highlight the important roles of cross-basin and cross-timescale interactions in generating extreme IOD events. The lack of accurate representation of these interactions may be the root for a short lead time in predicting this extreme pIOD with a state-of-the-art climate forecast model.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1049
Author(s):  
Xin Li ◽  
Ming Yin ◽  
Xiong Chen ◽  
Minghao Yang ◽  
Fei Xia ◽  
...  

Based on the observation and reanalysis data, the relationship between the Madden–Julian Oscillation (MJO) over the Maritime Continent (MC) and the tropical Pacific–Indian Ocean associated mode was analyzed. The results showed that the MJO over the MC region (95°–150° E, 10° S–10° N) (referred to as the MC–MJO) possesses prominent interannual and interdecadal variations and seasonally “phase-locked” features. MC–MJO is strongest in the boreal winter and weakest in the boreal summer. Winter MC–MJO kinetic energy variation has significant relationships with the El Niño–Southern Oscillation (ENSO) in winter and the Indian Ocean Dipole (IOD) in autumn, but it correlates better with the tropical Pacific–Indian Ocean associated mode (PIOAM). The correlation coefficient between the winter MC–MJO kinetic energy index and the autumn PIOAM index is as high as −0.5. This means that when the positive (negative) autumn PIOAM anomaly strengthens, the MJO kinetic energy over the winter MC region weakens (strengthens). However, the correlation between the MC–MJO convection and PIOAM in winter is significantly weaker. The propagation of MJO over the Maritime Continent differs significantly in the contrast phases of PIOAM. During the positive phase of the PIOAM, the eastward propagation of the winter MJO kinetic energy always fails to move across the MC region and cannot enter the western Pacific. However, during the negative phase of the PIOAM, the anomalies of MJO kinetic energy over the MC is not significantly weakened, and MJO can propagate farther eastward and enter the western Pacific. It should be noted that MJO convection is more likely to extend to the western Pacific in the positive phases of PIOAM than in the negative phases. This is significant different with the propagation of the MJO kinetic energy.


2020 ◽  
Vol 142 (1-2) ◽  
pp. 393-406
Author(s):  
Zhongkai Bo ◽  
Xiangwen Liu ◽  
Weizong Gu ◽  
Anning Huang ◽  
Yongjie Fang ◽  
...  

Abstract In this paper, we evaluate the capability of the Beijing Climate Center Climate System Model (BCC-CSM) in simulating and forecasting the boreal summer intraseasonal oscillation (BSISO), using its simulation and sub-seasonal to seasonal (S2S) hindcast results. Results show that the model can generally simulate the spatial structure of the BSISO, but give relatively weaker strength, shorter period, and faster transition of BSISO phases when compared with the observations. This partially limits the model’s capability in forecasting the BSISO, with a useful skill of only 9 days. Two sets of hindcast experiments with improved atmospheric and atmosphere/ocean initial conditions (referred to as EXP1 and EXP2, respectively) are conducted to improve the BSISO forecast. The BSISO forecast skill is increased by 2 days with the optimization of atmospheric initial conditions only (EXP1), and is further increased by 1 day with the optimization of both atmospheric and oceanic initial conditions (EXP2). These changes lead to a final skill of 12 days, which is comparable to the skills of most models participated in the S2S Prediction Project. In EXP1 and EXP2, the BSISO forecast skills are improved for most initial phases, especially phases 1 and 2, denoting a better description for BSISO propagation from the tropical Indian Ocean to the western North Pacific. However, the skill is considerably low and insensitive to initial conditions for initial phase 6 and target phase 3, corresponding to the BSISO convection’s active-to-break transition over the western North Pacific and BSISO convection’s break-to-active transition over the tropical Indian Ocean and Maritime Continent. This prediction barrier also exists in many forecast models of the S2S Prediction Project. Our hindcast experiments with different initial conditions indicate that the remarkable model errors over the Maritime Continent and subtropical western North Pacific may largely account for the prediction barrier.


Sign in / Sign up

Export Citation Format

Share Document