indian ocean dipole event
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 11)

H-INDEX

6
(FIVE YEARS 2)

Abstract The present study investigates the interannual variability of the tropical Indian Ocean (IO) based on the transfer routes of wave energy in a set of 61-year hindcast experiments using a linear ocean model. To understand the basic feature of the IO Dipole mode, this paper focuses on the 1994 pure positive event. Two sets of westward transfer episodes in the energy flux associated with Rossby waves (RWs) are identified along the equator during 1994. One set represents the same phase speed as the linear theory of equatorial RWs, while the other set is slightly slower than the theoretical phase speed. The first set originates from the reflection of equatorial Kelvin waves at the eastern boundary of the IO. On the other hand, the second set is found to be associated with off-equatorial RWs generated by southeasterly winds in the southeastern IO, which may account for the appearance of the slower group velocity. A combined empirical orthogonal function (EOF) analysis of energy-flux streamfunction and potential reveals the intense westward signals of energy flux are attributed to off-equatorial RWs associated with predominant wind input in the southeastern IO corresponding to the positive IO Dipole event.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Iskhaq Iskandar ◽  
Motoki Nagura ◽  
Michael J. McPhaden

AbstractThe termination of Indian Ocean Dipole (IOD) events is examined in terms of equatorial wave dynamics. In situ and satellite observations combined with an output from a linear wave model are used in this study. Our emphasis is on the 1997 IOD event but our results apply to other positive IOD events as well. We find that the termination of anomalously cold sea surface temperature (SST) in the eastern pole of the dipole is associated with a warming tendency caused by the net surface heat fluxes. However, net surface heat fluxes alone cannot explain the total change in the SST. We show that during the peak phase of an IOD event, the weakening of zonal heat advection caused by eastern boundary-generated Rossby waves combined with the reduction of vertical entrainment and diffusion creates favorable conditions for surface heat fluxes to warm the SST in the eastern basin.


2021 ◽  
Author(s):  
Zoe Jacobs ◽  
Fatma Jebri ◽  
Meric Srokosz ◽  
Dionysios Raitsos ◽  
Stuart Painter ◽  
...  

<p>Under the impact of natural and anthropogenic climate variability, upwelling systems are known to change their properties leading to associated regime shifts in marine ecosystems. These often impact commercial fisheries and societies dependent on them. In a region where in situ hydrographic and biological marine data are scarce, this study uses a combination of remote sensing and ocean modelling to show how a stable seasonal upwelling off the Kenyan coast shifted into the territorial waters of neighboring Tanzania under the influence of the unique 1997/ 98 El Niño and positive Indian Ocean Dipole event. The formation of an anticyclonic gyre adjacent to the Kenyan/ Tanzanian coast led to a reorganization of the surface currents and caused the southward migration of the Somali–Zanzibar confluence zone and is attributed to anomalous wind stress curl over the central Indian Ocean. This caused the lowest observed chlorophyll-a over the North Kenya banks (Kenya), while it reached its historical maximum off Dar Es Salaam (Tanzanian waters). We demonstrate that this situation is specific to the 1997/ 98 El Niño when compared with other the super El-Niño events of 1972,73, 1982–83 and 2015–16. Despite the lack of available fishery data in the region, the local ecosystem changes that the shift of this upwelling may have caused are discussed based on the literature. The likely negative impacts on local fish stocks in Kenya, affecting fishers’ livelihoods and food security, and the temporary increase in pelagic fishery species’ productivity in Tanzania are highlighted. Finally, we discuss how satellite observations may assist fisheries management bodies to anticipate low productivity periods, and mitigate their potentially negative economic impacts.</p>


2021 ◽  
pp. 1-39
Author(s):  
Lei Zhang ◽  
Weiqing Han ◽  
Zeng-Zhen Hu

AbstractAn unprecedented extreme positive Indian Ocean Dipole event (pIOD) occurred in 2019, which has caused widespread disastrous impacts on countries bordering the Indian Ocean, including the East African floods and vast bushfires in Australia. Here we investigate the causes for the 2019 pIOD by analyzing multiple observational datasets and performing numerical model experiments. We find that the 2019 pIOD is triggered in May by easterly wind bursts over the tropical Indian Ocean associated with the dry phase of the boreal summer intraseasonal oscillation, and sustained by the local atmosphere-ocean interaction thereafter. During September-November, warm sea surface temperature anomalies (SSTA) in the central-western tropical Pacific further enhance the Indian Ocean’s easterly winds, bringing the pIOD to an extreme magnitude. The central-western tropical Pacific warm SSTA is strengthened by two consecutive Madden Julian Oscillation (MJO) events that originate from the tropical Indian Ocean. Our results highlight the important roles of cross-basin and cross-timescale interactions in generating extreme IOD events. The lack of accurate representation of these interactions may be the root for a short lead time in predicting this extreme pIOD with a state-of-the-art climate forecast model.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei Shi ◽  
Menghua Wang

AbstractThe 2019 positive Indian Ocean Dipole (IOD) event in the boreal autumn was the most serious IOD event of the century with reports of significant sea surface temperature (SST) changes in the east and west equatorial Indian Ocean. Observations of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) between 2012 and 2020 are used to study the significant biological dipole response that occurred in the equatorial Indian Ocean following the 2019 positive IOD event. For the first time, we propose, identify, characterize, and quantify the biological IOD. The 2019 positive IOD event led to anomalous biological activity in both the east IOD zone and west IOD zone. The average chlorophyll-a (Chl-a) concentration reached over ~ 0.5 mg m−3 in 2019 in comparison to the climatology Chl-a of ~ 0.3 mg m−3 in the east IOD zone. In the west IOD zone, the biological activity was significantly depressed. The depressed Chl-a lasted until May 2020. The anomalous ocean biological activity in the east IOD zone was attributed to the advection of the higher-nutrient surface water due to enhanced upwelling. On the other hand, the dampened ocean biological activity in the west IOD zone was attributed to the stronger convergence of the surface waters than that in a normal year.


2020 ◽  
Vol 12 (19) ◽  
pp. 3127
Author(s):  
Zoe L. Jacobs ◽  
Fatma Jebri ◽  
Meric Srokosz ◽  
Dionysios E. Raitsos ◽  
Stuart C. Painter ◽  
...  

Under the impact of natural and anthropogenic climate variability, upwelling systems are known to change their properties leading to associated regime shifts in marine ecosystems. These often impact commercial fisheries and societies dependent on them. In a region where in situ hydrographic and biological marine data are scarce, this study uses a combination of remote sensing and ocean modelling to show how a stable seasonal upwelling off the Kenyan coast shifted into the territorial waters of neighboring Tanzania under the influence of the unique 1997/98 El Niño and positive Indian Ocean Dipole event. The formation of an anticyclonic gyre adjacent to the Kenyan/Tanzanian coast led to a reorganization of the surface currents and caused the southward migration of the Somali–Zanzibar confluence zone and is attributed to anomalous wind stress curl over the central Indian Ocean. This caused the lowest observed chlorophyll-a over the North Kenya banks (Kenya), while it reached its historical maximum off Dar Es Salaam (Tanzanian waters). We demonstrate that this situation is specific to the 1997/98 El Niño when compared with other the super El-Niño events of 1972,73, 1982–83 and 2015–16. Despite the lack of available fishery data in the region, the local ecosystem changes that the shift of this upwelling may have caused are discussed based on the literature. The likely negative impacts on local fish stocks in Kenya, affecting fishers’ livelihoods and food security, and the temporary increase in pelagic fishery species’ productivity in Tanzania are highlighted. Finally, we discuss how satellite observations may assist fisheries management bodies to anticipate low productivity periods, and mitigate their potentially negative economic impacts.


2020 ◽  
Vol 47 (18) ◽  
Author(s):  
Guojian Wang ◽  
Wenju Cai ◽  
Kai Yang ◽  
Agus Santoso ◽  
Toshio Yamagata

Sign in / Sign up

Export Citation Format

Share Document