Improved probabilistic twenty-first century projections of sea surface temperature over East Asian marginal seas by considering uncertainty owing to model error and internal variability

2019 ◽  
Vol 53 (9-10) ◽  
pp. 6075-6087
Author(s):  
Jongsoo Shin ◽  
Roman Olson ◽  
Soon-Il An
2021 ◽  
Vol 8 ◽  
Author(s):  
Marcos Tonelli ◽  
Camila Negrão Signori ◽  
Amanda Bendia ◽  
Juliana Neiva ◽  
Bruno Ferrero ◽  
...  

Anthropogenic global warming can have strong impacts on marine ecosystems, especially on climate-sensitive regions such as the Southern Ocean (SO). As key drivers of biogeochemical cycles, pelagic microbial communities are likely to respond to increases in sea surface temperature (SST). Thus, it is critical to understand how SST may change in future scenarios and how these changes will affect the composition and structure of microbial communities. By using a suite of Earth System Models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6), machine learning, and 16S rRNA sequencing data, we investigated the long-term changes as projected by CMIP6 simulations in SST throughout the twenty first century and the microbial diversity responses in the SO. Four Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) were considered to assess the SO surface sensitivity to a warming climate. The SST changes across SSPs were ≈0.3, ≈0.7, ≈1.25, and ≈1.6oC between 2015 and 2100, respectively, and the high emissions scenarios projected a much sooner emergence of the human-induced temperature change throughout the SO. The impacts on Antarctic marine diversity of bacteria and archaea are expected to be significant and persistent by the late twenty first century, especially within the higher end of the range of future forcing pathways.


2015 ◽  
Vol 26 (3) ◽  
pp. 331 ◽  
Author(s):  
Hyeonyeong Kwak ◽  
Yang-Ki Cho ◽  
Gwang-Ho Seo ◽  
Yong-Jin Tak ◽  
Hyo-Seok Park ◽  
...  

2020 ◽  
Author(s):  
Joong-Bae Ahn ◽  
Yeon-Woo Choi

<p>This study investigates the relationship between the preceding late spring Sea Surface Temperature (SST) over the tropical Atlantic and the East Asian Summer Monsoon (EASM) based on the observational data and Coupled Model Intercomparison Project Phase 5 (CMIP5) historical simulations. The results show that warm (cold) tropical Atlantic SST (TASST) during May tends to be followed by a strong (weak) EASM with positive (negative) precipitation anomalies over the subtropical frontal area. Evidence is also provided that the atmospheric teleconnections propagating in both east and west directions are the key mechanisms linking the EASM with the preceding May TASST. That is, the warm TASST anomaly during late spring can persist through the subsequent summer, which, in turn, induces the Gill-type Rossby wave response in the eastern Pacific, exciting the westward relay of the Atlantic signal, as well as the eastward propagation of the Rossby wave along the jet stream. Furthermore, the westward (eastward) propagating teleconnection signal may induce the anomalous anticyclone in the lower troposphere over the Philippine Sea (anomalous tropospheric anticyclone with barotropic structure over the Okhotsk Sea). The anomalous anticyclonic circulation over the Philippine Sea (Okhotsk Sea) brings warm and humid (cold) air to higher latitudes (lower latitudes). These two different types of air mass merge over the Baiu-Meiyu–Changma region, causing the enhanced subtropical frontal rainfall. To support the observational findings, CMIP5 historical simulations are also utilized. Most state-of-the-art CMIP5 models can simulate this relationship between May TASST and the EASM.</p><p>Reference: Choi, Y., Ahn, J. Possible mechanisms for the coupling between late spring sea surface temperature anomalies over tropical Atlantic and East Asian summer monsoon. Clim Dyn <strong>53, </strong>6995–7009 (2019) doi:10.1007/s00382-019-04970-3</p><p>Acknowledgment: This work was funded by the Korea Meteorological Administration Research and Development Program under Grant KMI2018-01213.</p><p> </p>


2017 ◽  
Author(s):  
Wenshou Tian ◽  
Yuanpu Li ◽  
Fei Xie ◽  
Jiankai Zhang ◽  
Martyn P. Chipperfield ◽  
...  

Abstract. Using satellite observations, reanalysis data, and model simulations, this study investigates the effect of sea surface temperatures (SST) on interannual variations of lower stratospheric ozone in the southern high latitude. It is found that the SST variations across the East Asian marginal seas (5 °S–35 °N, 100 °E–140 °E) rather than the tropical eastern Pacific Ocean, where ENSO occurs, have the most significant correlation with the southern high latitude lower stratospheric ozone changes. Further analysis reveals that planetary waves originating over the marginal seas can be propagated to southern middle to high latitudes via two teleconnection pathways in summer and one pathway in autumn. The anomalous propagation and dissipation of ultra-long Rossby waves in the stratosphere strengthen/cool (weaken/warm) the southern polar vortex which produces more (less) active chlorine and enhances (suppresses) ozone depletion in the southern high latitude stratosphere on one hand, and impedes (favors) the transport of ozone from the southern middle latitude stratosphere to high latitude on the other. The model simulations also reveal that approximately 17 % of the decreasing trend in the southern high latitude lower stratospheric ozone observed over the past five decades can be attributed to the increasing trend in SST over the East Asian marginal seas.


2021 ◽  
Author(s):  
Ze Zhang ◽  
Zhixiang Wang ◽  
Chunju Huang

<p>The Pliocene - Pleistocene period (3.6-1.8 Ma) was a significant global cooling time, from very warm, equable climates to high-amplitude glacial-interglacial cycles. The origin of glaciers in the Northern Hemisphere, and the mechanisms by which glacial cycles have expanded since the late Pliocene, remain a subject of ongoing discussion. The studies of the Pliocene orbital scale climate evolution mainly are focused on marine sediments and loess-paleosoil sequences, however, there are few records of continental lacustrine facies during this period. Here we present a 37.6 m high-resolution Sanmen lacustrine sequences during the Pliocene-Pleistocene transition period that indicates the astronomically controlling East Asian climate transition and the Sanmen paloelake evolution. The Rb/Sr series evolution was divided into two parts for astronomical analysis based on the obvious changes observed in curve shape and Evolutionary spectral analysis through the section: 7.4-19 and 19-45 m. Based on evaluation of average accumulation rates from paleomagnetic results, the dominated ~99-cm cycles in the 7.4 to 19 m intervals represent ~41 kyr obliquity cycles. The 19 to 45 m intervals show obvious cycles at ~232-cm, interpreting as ~100 kyr eccentricity. Astronomical tuning combined with paleomagnetic results has been used to establish the 3.83-2.32 Ma high-precision astronomical scale. Rb/Sr series reveals that ~100 kyr eccentricity was the dominant control on lake expansion for Sanmen paleolake evolutionary before 2.75 Ma, after that, dominant obliquity control. Based on re-established the meridional sea surface temperature (SST) gradient between polar Atlantic borehole ODP 982 and the equatorial Atlantic borehole ODP 662, results show that the meridional sea surface temperature gradients increased significantly at 2.75 Ma, with cyclicity changing from the dominant ~140 kyr and ~95 kyr cycles to ~41 kyr at 2.75 Ma, and is coeval with our Rb/Sr record in the Weihe Basin. Crossspectral analysis show that the Rb/Sr and meridional SST gradient are strongly coherent and almost in-phase at these primary orbital periods in the past between 3.83-2.32 Ma. Thus, we conclude that the reorganization of the East Asian climate system at ~2.75 Ma, which coincided with the expansion of Arctic ice sheet, was a response to a dramatic cooling of the global climate and obliquity-driven changes in meridional SST gradients.</p>


Sign in / Sign up

Export Citation Format

Share Document