scholarly journals A tropical cyclone removal technique based on potential vorticity inversion to better quantify tropical cyclone contribution to the background circulation

2020 ◽  
Vol 54 (5-6) ◽  
pp. 3201-3226 ◽  
Author(s):  
Sho Arakane ◽  
Huang-Hsiung Hsu
2001 ◽  
Vol 59 (5) ◽  
pp. 725-747 ◽  
Author(s):  
J. Ochoa ◽  
J. Sheinbaum ◽  
A. Badan ◽  
J. Candela ◽  
D. Wilson

2007 ◽  
Vol 64 (6) ◽  
pp. 1794-1810 ◽  
Author(s):  
Ali R. Mohebalhojeh ◽  
Michael E. McIntyre

The effects of enforcing local mass conservation on the accuracy of non-Hamiltonian potential-vorticity- based balanced models (PBMs) are examined numerically for a set of chaotic shallow-water f-plane vortical flows in a doubly periodic square domain. The flows are spawned by an unstable jet and all have domain-maximum Froude and Rossby numbers Fr ∼0.5 and Ro ∼1, far from the usual asymptotic limits Ro → 0, Fr → 0, with Fr defined in the standard way as flow speed over gravity wave speed. The PBMs considered are the plain and hyperbalance PBMs defined in Part I. More precisely, they are the plain-δδ, plain-γγ, and plain-δγ PBMs and the corresponding hyperbalance PBMs, of various orders, where “order” is related to the number of time derivatives of the divergence equation used in defining balance and potential-vorticity inversion. For brevity the corresponding hyperbalance PBMs are called the hyper-δδ, hyper-γγ, and hyper-δγ PBMs, respectively. As proved in Part I, except for the leading-order plain-γγ each plain PBM violates local mass conservation. Each hyperbalance PBM results from enforcing local mass conservation on the corresponding plain PBM. The process of thus deriving a hyperbalance PBM from a plain PBM is referred to for brevity as plain-to-hyper conversion. The question is whether such conversion degrades the accuracy, as conjectured by McIntyre and Norton. Cumulative accuracy is tested by running each PBM alongside a suitably initialized primitive equation (PE) model for up to 30 days, corresponding to many vortex rotations. The accuracy is sensitively measured by the smallness of the ratio ϵ = ||QPBM − QPE||2/||QPE||2, where QPBM and QPE denote the potential vorticity fields of the PBM and the PEs, respectively, and || ||2 is the L2 norm. At 30 days the most accurate PBMs have ϵ ≈ 10−2 with PV fields hardly distinguishable visually from those of the PEs, even down to tiny details. Most accurate is defined by minimizing ϵ over all orders and truncation types δδ, γγ, and δγ. Contrary to McIntyre and Norton’s conjecture, the minimal ϵ values did not differ systematically or significantly between plain and hyperbalance PBMs. The smallness of ϵ suggests that the slow manifolds defined by the balance relations of the most accurate PBMs, both plain and hyperbalance, are astonishingly close to being invariant manifolds of the PEs, at least throughout those parts of phase space for which Ro ≲ 1 and Fr ≲ 0.5. As another way of quantifying the departures from such invariance, that is, of quantifying the fuzziness of the PEs’ slow quasimanifold, initialization experiments starting at days 1, 2, . . . 10 were carried out in which attention was focused on the amplitudes of inertia–gravity waves representing the imbalance arising in 1-day PE runs. With balance defined by the most accurate PBMs, and imbalance by departures therefrom, the results of the initialization experiments suggest a negative correlation between early imbalance and late cumulative error ϵ. In such near-optimal conditions the imbalance seems to be acting like weak background noise producing an effect analogous to so-called stochastic resonance, in that a slight increase in noise level brings PE behavior closer to the balanced behavior defined by the most accurate PBMs when measured cumulatively over 30 days.


2013 ◽  
Vol 70 (8) ◽  
pp. 2547-2565 ◽  
Author(s):  
Marie-Dominique Leroux ◽  
Matthieu Plu ◽  
David Barbary ◽  
Frank Roux ◽  
Philippe Arbogast

Abstract The rapid intensification of Tropical Cyclone (TC) Dora (2007, southwest Indian Ocean) under upper-level trough forcing is investigated. TC–trough interaction is simulated using a limited-area operational numerical weather prediction model. The interaction between the storm and the trough involves a coupled evolution of vertical wind shear and binary vortex interaction in the horizontal and vertical dimensions. The three-dimensional potential vorticity structure associated with the trough undergoes strong deformation as it approaches the storm. Potential vorticity (PV) is advected toward the tropical cyclone core over a thick layer from 200 to 500 hPa while the TC upper-level flow turns cyclonic from the continuous import of angular momentum. It is found that vortex intensification first occurs inside the eyewall and results from PV superposition in the thick aforementioned layer. The main pathway to further storm intensification is associated with secondary eyewall formation triggered by external forcing. Eddy angular momentum convergence and eddy PV fluxes are responsible for spinning up an outer eyewall over the entire troposphere, while spindown is observed within the primary eyewall. The 8-km-resolution model is able to reproduce the main features of the eyewall replacement cycle observed for TC Dora. The outer eyewall intensifies further through mean vertical advection under dynamically forced upward motion. The processes are illustrated and quantified using various diagnostics.


1999 ◽  
Vol 127 (1) ◽  
pp. 124-131 ◽  
Author(s):  
Lloyd J. Shapiro ◽  
James L. Franklin

2012 ◽  
Vol 140 (11) ◽  
pp. 3634-3652 ◽  
Author(s):  
Bryce Tyner ◽  
Anantha Aiyyer

Abstract The evolution of African easterly waves (AEWs) leading to tropical cyclones (TCs) in the Atlantic during 2000–08 is examined from isentropic potential vorticity (PV) and Lagrangian streamline perspectives. Tropical cyclone formation is commonly preceded by axisymmetrization of PV, scale contraction of the wave, and formation of a closed circulation within the wave. In these cases, PV associated with the synoptic-scale wave is irreversibly deformed and subsumed within the developing vortex. Less commonly, filamentation of the PV leads to separation and independent propagation of the wave and the TC vortex. In an example presented here, the remnant wave with a closed circulation persisted for several days after separation from the TC. A second TC did not result, consistent with several past studies that show that a midtropospheric closed gyre is not sufficient for TC genesis. Sometimes, an AEW and a weak TC remain coupled for a few days, followed by the dissipation of the TC and the continued propagation of the wave. Merger of tropical and extratropical PV anomalies is also often observed and likely helps maintain some waves. The results of this study are broadly consistent with recent Lagrangian analyses of AEW evolution during TC genesis.


2012 ◽  
Vol 27 (6) ◽  
pp. 1554-1567 ◽  
Author(s):  
Philippe Arbogast ◽  
Karine Maynard ◽  
Catherine Piriou

Abstract The National Weather Forecast Centre of Météo-France has developed a tool that corrects the state of the atmosphere within the Action de Recherche Petite Echelle Grande Echelle (ARPEGE) operational global model by adjusting the potential vorticity when the initial conditions and available observations disagree. Among observational datasets, geostationary satellite data are the primary source of information. Here, the representation of the coherent structures of the tropopause in the model is assessed with Meteosat ozone and water vapor images. Modifications to the initial conditions of the potential vorticity (PV) in areas where the model fails can be applied using a potential vorticity inversion, thus providing a new balanced distribution of the wind and temperature that will then be used as a new initial state. The purpose of the paper is to investigate the degrees of weakness of the present qualitative approach. To this end, PV modifications to the initial conditions are applied by different experts on the eve of the windstorm Klaus (24 January 2009) that hit southwestern France. The different initial PV fields and the subsequent forecasts show significant differences in terms of wind and mean sea level pressure, while sharing some common features. The human modification process is therefore partially reproducible and skillful since the forecast is improved most of the time.


Sign in / Sign up

Export Citation Format

Share Document