Recent Eurasian winter cooling partly caused by internal multidecadal variability amplified by Arctic sea ice-air interactions

2022 ◽  
Author(s):  
Aiguo Dai ◽  
Jiechun Deng
2014 ◽  
Vol 41 (2) ◽  
pp. 463-469 ◽  
Author(s):  
Martin W. Miles ◽  
Dmitry V. Divine ◽  
Tore Furevik ◽  
Eystein Jansen ◽  
Matthias Moros ◽  
...  

2020 ◽  
Author(s):  
Aiguo Dai ◽  
Jiechun Deng

Abstract Winter surface air temperature (Tas) over the Barents-Kara Seas (BKS) and other Arctic regions has experienced rapid warming since the late 1990 that has been linked to the concurring cooling over Eurasia1-3. However, the cause of this accelerated BKS warming is not well understood, and whether and how internal variability may have contributed to this warming is unclear. Through analyses of observations and model simulations, we show that two-way interactions between sea ice and air amplify multidecadal variability in Arctic sea-ice cover (SIC) and sea surface temperatures (SST) from the North Atlantic to BKS, and produce large multidecadal variations in Tas over the BKS, Greenland-Norwegian Seas and Baffin Bay. Advection of SST anomalies from the North Atlantic to the Arctic causes SIC to change, which produces large anomalies in surface energy fluxes and Tas. However, the sea ice-air interactions also amplify the variations in SIC and SST, and the Atlantic Meridional Overturning Circulation (AMOC) mainly through local surface fluxes. When sea ice is fixed or melts away under increasing CO2, not only Arctic Tas multidecadal variations disappear, but also the SIC, SST and AMOC variations are greatly reduced. The results suggest that sea ice-air interactions are vital for multidecadal climate variability not only in the Arctic but also in the North Atlantic, similar to air-sea interactions for tropical climate. As Arctic sea ice is projected to melt away4,5, these interactions and thus multidecadal variability from the North Atlantic to the Arctic will likely weaken in the coming decades.


2020 ◽  
pp. 024
Author(s):  
Rym Msadek ◽  
Gilles Garric ◽  
Sara Fleury ◽  
Florent Garnier ◽  
Lauriane Batté ◽  
...  

L'Arctique est la région du globe qui s'est réchauffée le plus vite au cours des trente dernières années, avec une augmentation de la température de surface environ deux fois plus rapide que pour la moyenne globale. Le déclin de la banquise arctique observé depuis le début de l'ère satellitaire et attribué principalement à l'augmentation de la concentration des gaz à effet de serre aurait joué un rôle important dans cette amplification des températures au pôle. Cette fonte importante des glaces arctiques, qui devrait s'accélérer dans les décennies à venir, pourrait modifier les vents en haute altitude et potentiellement avoir un impact sur le climat des moyennes latitudes. L'étendue de la banquise arctique varie considérablement d'une saison à l'autre, d'une année à l'autre, d'une décennie à l'autre. Améliorer notre capacité à prévoir ces variations nécessite de comprendre, observer et modéliser les interactions entre la banquise et les autres composantes du système Terre, telles que l'océan, l'atmosphère ou la biosphère, à différentes échelles de temps. La réalisation de prévisions saisonnières de la banquise arctique est très récente comparée aux prévisions du temps ou aux prévisions saisonnières de paramètres météorologiques (température, précipitation). Les résultats ayant émergé au cours des dix dernières années mettent en évidence l'importance des observations de l'épaisseur de la glace de mer pour prévoir l'évolution de la banquise estivale plusieurs mois à l'avance. Surface temperatures over the Arctic region have been increasing twice as fast as global mean temperatures, a phenomenon known as arctic amplification. One main contributor to this polar warming is the large decline of Arctic sea ice observed since the beginning of satellite observations, which has been attributed to the increase of greenhouse gases. The acceleration of Arctic sea ice loss that is projected for the coming decades could modify the upper level atmospheric circulation yielding climate impacts up to the mid-latitudes. There is considerable variability in the spatial extent of ice cover on seasonal, interannual and decadal time scales. Better understanding, observing and modelling the interactions between sea ice and the other components of the climate system is key for improved predictions of Arctic sea ice in the future. Running operational-like seasonal predictions of Arctic sea ice is a quite recent effort compared to weather predictions or seasonal predictions of atmospheric fields like temperature or precipitation. Recent results stress the importance of sea ice thickness observations to improve seasonal predictions of Arctic sea ice conditions during summer.


1988 ◽  
Author(s):  
NAVAL POLAR OCEANOGRAPHY CENTER WASHINGTON DC

1992 ◽  
Author(s):  
NAVAL POLAR OCEANOGRAPHY CENTER WASHINGTON DC

2013 ◽  
Author(s):  
Kenneth M. Golden ◽  
Donald K. Perovich

Sign in / Sign up

Export Citation Format

Share Document