Postprandial muscle protein synthesis rate is unaffected by 20-day habituation to a high protein intake: a randomized controlled, crossover trial

Author(s):  
Grith Højfeldt ◽  
Jacob Bülow ◽  
Jakob Agergaard ◽  
Lene R. Simonsen ◽  
Jens Bülow ◽  
...  
2015 ◽  
Vol 173 (1) ◽  
pp. R25-R34 ◽  
Author(s):  
Jorn Trommelen ◽  
Bart B L Groen ◽  
Henrike M Hamer ◽  
Lisette C P G M de Groot ◽  
Luc J C van Loon

BackgroundThough it is well appreciated that insulin plays an important role in the regulation of muscle protein metabolism, there is much discrepancy in the literature on the capacity of exogenous insulin administration to increase muscle protein synthesis ratesin vivoin humans.ObjectiveTo assess whether exogenous insulin administration increases muscle protein synthesis rates in young and older adults.DesignA systematic review of clinical trials was performed and the presence or absence of an increase in muscle protein synthesis rate was reported for each individual study arm. In a stepwise manner, multiple models were constructed that excluded study arms based on the following conditions: model 1, concurrent hyperaminoacidemia; model 2, insulin-induced hypoaminoacidemia; model 3, supraphysiological insulin concentrations; and model 4, older, more insulin resistant, subjects.ConclusionsFrom the presented data in the current systematic review, we conclude that: i) exogenous insulin and amino acid administration effectively increase muscle protein synthesis, but this effect is attributed to the hyperaminoacidemia; ii) exogenous insulin administered systemically induces hypoaminoacidemia which obviates any insulin-stimulatory effect on muscle protein synthesis; iii) exogenous insulin resulting in supraphysiological insulin levels exceeding 50 000 pmol/l may effectively augment muscle protein synthesis; iv) exogenous insulin may have a diminished effect on muscle protein synthesis in older adults due to age-related anabolic resistance; and v) exogenous insulin administered systemically does not increase muscle protein synthesis in healthy, young adults.


2005 ◽  
Vol 288 (1) ◽  
pp. E278-E284 ◽  
Author(s):  
Kevin E. Yarasheski ◽  
Samuel R. Smith ◽  
William G. Powderly

We reported (Yarasheski KE, Zachwieja JJ, Gischler J, Crowley J, Horgan MM, and Powderly WG. Am J Physiol Endocrinol Metab 275: E577–E583, 1998) that AIDS muscle wasting was associated with an inappropriately low rate of muscle protein synthesis and an elevated glutamine rate of appearance (Ra Gln). We hypothesized that high plasma HIV RNA caused dysregulation of muscle amino acid metabolism. We determined whether a reduction in HIV RNA (≥1 log) increased muscle protein synthesis rate and reduced Ra Gln and muscle proteasome activity in 10 men and 1 woman (22–57 yr, 60–108 kg, 17–33 kg muscle) with advanced HIV (CD4 = 0–311 cells/μl; HIV RNA = 10–375 × 103 copies/ml). We utilized stable isotope tracer methodologies ([13C]Leu and [15N]Gln) to measure the fractional rate of mixed muscle protein synthesis and plasma Ra Gln in these subjects before and 4 mo after initiating their first or a salvage antiretroviral therapy regimen. After treatment, median CD4 increased (98 vs. 139 cells/μl, P = 0.009) and median HIV RNA was reduced (155,828 vs. 100 copies/ml, P = 0.003). Mixed muscle protein synthesis rate increased (0.062 ± 0.005 vs. 0.078 ± 0.006%/h, P = 0.01), Ra Gln decreased (387 ± 33 vs. 323 ± 15 μmol·kg fat-free mass−1·h−1, P = 0.04), and muscle proteasome chymotrypsin-like catalytic activity was reduced 14% ( P = 0.03). Muscle mass was only modestly increased (1 kg, P = not significant). We estimated that, for each 10,000 copies/ml reduction in HIV RNA, ∼3 g of additional muscle protein are synthesized per day. These findings suggest that reducing HIV RNA increases muscle protein synthesis and reduces muscle proteolysis, but muscle protein synthesis relative to whole body protein synthesis rate is not restored to normal, so muscle mass is not substantially increased.


1998 ◽  
Vol 275 (4) ◽  
pp. E577-E583 ◽  
Author(s):  
Kevin E. Yarasheski ◽  
Jeffrey J. Zachwieja ◽  
Jennifer Gischler ◽  
Jan Crowley ◽  
Mary M. Horgan ◽  
...  

Muscle protein wasting occurs in human immunodeficiency virus (HIV)-infected individuals and is often the initial indication of acquired immunodeficiency syndrome (AIDS). Little is known about the alterations in muscle protein metabolism that occur with HIV infection. Nine subjects with AIDS wasting (CD4 < 200/mm3), chronic stable opportunistic infections (OI), and ≥10% weight loss, fourteen HIV-infected men and one woman (CD4 > 200/mm3) without wasting or OI (asymptomatic), and six HIV-seronegative lean men (control) received a constant intravenous infusion of [1-13C]leucine (Leu) and [2-15N]glutamine (Gln). Plasma Leu and Gln rate of appearance (Ra), whole body Leu turnover, disposal and oxidation rates, and [13C]Leu incorporation rate into mixed muscle protein were assessed. Total body muscle mass/fat-free mass was greater in controls (53%) than in AIDS wasting (43%; P = 0.04). Fasting whole body proteolysis and synthesis rates were increased above control in the HIV+ asymptomatic group and in the AIDS-wasting group ( P = 0.009). Whole body Leu oxidation rate was greater in the HIV+ asymptomatic group than in the control and AIDS-wasting groups ( P < 0.05). Fasting mixed muscle protein synthesis rate was increased in the asymptomatic subjects (0.048%/h; P = 0.01) but was similar in AIDS-wasting and control subjects (0.035 vs. 0.037%/h). Plasma Gln Rawas increased in AIDS-wasting subjects but was similar in control and HIV+ asymptomatic subjects ( P < 0.001). These findings suggest that AIDS wasting results from 1) a preferential reduction in muscle protein, 2) a failure to sustain an elevated rate of mixed muscle protein synthesis while whole body protein synthesis is increased, and 3) a significant increase in Gln release into the circulation, probably from muscle. Several interesting explanations for the increased Gln Rain AIDS wasting exist.


Sign in / Sign up

Export Citation Format

Share Document