A novel photocurable modified epoxy resin for high heat resistance coatings

2020 ◽  
Vol 298 (10) ◽  
pp. 1303-1312
Author(s):  
Bangchao Yin ◽  
Junhua Zhang
2019 ◽  
Vol 27 (9) ◽  
pp. 582-586 ◽  
Author(s):  
Binghai Li ◽  
Xiaohong Zhang ◽  
Guicun Qi ◽  
Xiang Wang ◽  
Jiangru Zhang ◽  
...  

A high performance epoxy composite with very high toughness and heat resistance had been designed and prepared. Epoxy resin TDE-85 with an impact strength of 10.2 kJ m−2, a heat distortion temperature (HDT) of 121°C, and a glass transition temperature of 127°C was chosen as the matrix of the composite, while carboxylic nitrile-butadiene elastomeric nanoparticles (CNB-ENPs) coated with triethanolamine on the surface with a diameter of about 100 nm was selected as the modifier. Surprisingly, the rubber-modified epoxy resin exhibited not only very high toughness but also very high heat resistance. The HDT of epoxy resin TDE-85 after modification increased 57°C, reaching 178°C, while the impact strength increased by 107%, increasing to 21.1 kJ m−2. The relationship between the microstructure and performance had been evaluated by transmission electron microscopy, mechanical testing, and dynamic mechanical analysis. The results showed that the CNB-ENP/TDE-85 composite resulted in large interface and a special morphology after modification.


2021 ◽  
Vol 15 (12) ◽  
pp. 1189-1205
Author(s):  
S. H. Liu ◽  
X. Q. Zhang ◽  
J. H. Liu ◽  
C. H. Lei ◽  
Z. X. Dong

FirePhysChem ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 8-20
Author(s):  
Xingyu Huo ◽  
Fanfan Wang ◽  
Liang Liang Niu ◽  
Ruijun Gou ◽  
Chaoyang Zhang

2021 ◽  
Vol 9 (3) ◽  
pp. 667
Author(s):  
Zhiwei Tu ◽  
Peter Setlow ◽  
Stanley Brul ◽  
Gertjan Kramer

Bacterial endospores (spores) are among the most resistant living forms on earth. Spores of Bacillus subtilis A163 show extremely high resistance to wet heat compared to spores of laboratory strains. In this study, we found that spores of B. subtilis A163 were indeed very wet heat resistant and released dipicolinic acid (DPA) very slowly during heat treatment. We also determined the proteome of vegetative cells and spores of B. subtilis A163 and the differences in these proteomes from those of the laboratory strain PY79, spores of which are much less heat resistant. This proteomic characterization identified 2011 proteins in spores and 1901 proteins in vegetative cells of B. subtilis A163. Surprisingly, spore morphogenic protein SpoVM had no homologs in B. subtilis A163. Comparing protein expression between these two strains uncovered 108 proteins that were differentially present in spores and 93 proteins differentially present in cells. In addition, five of the seven proteins on an operon in strain A163, which is thought to be primarily responsible for this strain’s spores high heat resistance, were also identified. These findings reveal proteomic differences of the two strains exhibiting different resistance to heat and form a basis for further mechanistic analysis of the high heat resistance of B. subtilis A163 spores.


2006 ◽  
Vol 37 (1) ◽  
pp. 418 ◽  
Author(s):  
Yoshiaki Watanabe ◽  
Ken-ichi Makita ◽  
Yasuyoshi Fujii ◽  
Hisanori Okada ◽  
Naoto Obara ◽  
...  

Polymer ◽  
2007 ◽  
Vol 48 (15) ◽  
pp. 4301-4304 ◽  
Author(s):  
Joji Ohshita ◽  
Koichi Hino ◽  
Ko Inata ◽  
Atsutaka Kunai ◽  
Takayuki Maehara

2017 ◽  
Vol 323 ◽  
pp. 29-36 ◽  
Author(s):  
Cheng-Hua Cui ◽  
Ding-Xiang Yan ◽  
Huan Pang ◽  
Li-Chuan Jia ◽  
Xin Xu ◽  
...  

2008 ◽  
Vol 74 (11) ◽  
pp. 3328-3335 ◽  
Author(s):  
Benjamin Orsburn ◽  
Stephen B. Melville ◽  
David L. Popham

ABSTRACT The endospores formed by strains of type A Clostridium perfringens that produce the C. perfringens enterotoxin (CPE) are known to be more resistant to heat and cold than strains that do not produce this toxin. The high heat resistance of these spores allows them to survive the cooking process, leading to a large number of food-poisoning cases each year. The relative importance of factors contributing to the establishment of heat resistance in this species is currently unknown. The present study examines the spores formed by both CPE+ and CPE− strains for factors known to affect heat resistance in other species. We have found that the concentrations of DPA and metal ions, the size of the spore core, and the protoplast-to-sporoplast ratio are determining factors affecting heat resistance in these strains. While the overall thickness of the spore peptidoglycan was found to be consistent in all strains, the relative amounts of cortex and germ cell wall peptidoglycan also appear to play a role in the heat resistance of these strains.


2019 ◽  
Vol 55 (2) ◽  
pp. 1-4 ◽  
Author(s):  
Hiroaki Machida ◽  
Teruhiko Fujiwara ◽  
Chieko Fujimoto ◽  
Yu Kanamori ◽  
Jun Tanaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document