Textural evolution of perovskite in the Afrikanda alkaline–ultramafic complex, Kola Peninsula, Russia

Author(s):  
Naomi J. Potter ◽  
Matthew R. M. Ferguson ◽  
Vadim S. Kamenetsky ◽  
Anton R. Chakhmouradian ◽  
Victor V. Sharygin ◽  
...  
2020 ◽  
Author(s):  
Pavel Serov ◽  
Tamara Bayanova ◽  
Ekaterina Steshenko ◽  
Eugenii Kunakkuzin ◽  
Elena Borisenko

<p>The Pados-Tundra massif is located in the western Kola Peninsula and included in the Notozero ultrabasic rock complex (Vinogradov, 1971). The intrusion occurs as a body of ca. 13 km<sup>2</sup> stretched out to the north-east. Enclosing rocks are Archaean granite- and granodiorite-gneisses. There are three major areas in the massif structure (Mamontov, Dokuchaeva, 2005): endocontact area, rhythmically layered series, and upper area. The endocontact area with thickness of 10-20 m occurs as schistose amphibole rocks formed during the metamorphism of main rocks. The rhythmically layered series occurs as a number of rocks from dunites to orthopyroxenites and composes most of the massif. There are 7 rhythms in total, each of which starts with dunites and ends with orthopyroxenites. Dykes of mezo- and leucocratic gabbro, diorites, and hornblendites are developed in the series rocks. The upper gabbronorite area can be partially observed in the north-eastern massif. Presumably, its major volume has been overlapped by enclosing rocks as a result of the overthrust. In the massif, there are 4 horizons of disseminated stratiform chromite ores, which are confined to dunites and serpentinites, as well as to a number of lens- and column-like bodies (podiform type) of chromite ores (Mamontov, Dokuchaeva, 2005; Barkov et al., 2017). Previous isotope-geochronological studies have determined the massif rock age of 2.15 Ga (Shapkin et al., 2008). However, further geological field observations and analysis of the obtained data assume that the intrusive is much older.</p><p>New Sm-Nd geochronological data indicate that the massif rocks and its rhythmically layered series are of Paleoproterozoic age, which is similar to the age of the Cu-Ni-Co-Cr-PGE ore-magmatic system of the Fennoscandian Shield (Amelin et al., 1995; Bayanova et al., 2014, 2017, 2019; Hanski et al., 2001; Huhma et al., 1990, 1996; Layered intrusions ...; 2004; Maier, Hanski, 2017; Mitrofanov et al., 2019; Peltonen, Brugmann, 2006; Puchtel et al., 2001; Serov, 2008; Serov et al., 2014; Sharkov, 2006; Sharkov, Smolkin, 1997). Complex Sm-Nd and U-Pb isotope-geochronological studies have allowed determining the major formation and alteration stages of the Pados-Tundra complex rocks:</p><p>–  formation of the rhythmically layered series rocks of the intrusive 2485±77 Ma, harzburgites of the layered series – 2475±38 Ma;</p><p>– metamorphism of the massif rocks at the turn of 1.95 - 1.9 Ga;</p><p>– postmetamorphic cooling of the complex rocks tо 650°-600°С at the turn of 1872±76 Ma (Sm-Nd for metamorphic minerals) and then to 450°-400°С (U-Pb for rutile, 1804±10 Ma).</p><p>Therefore, the study results expand geography the East-Scandinavian large Palaeoproterozoic igneous province and are prospective for further study of analogous ultramafite-mafite complexes.</p><p>All investigations and were supported by the RFBR 18-05-70082, 18-35-00246, Presidium RAS Program #48 and are in frame of the Theme of Scientific Research 0226-2019-0053.</p>


2013 ◽  
Vol 353 ◽  
pp. 210-229 ◽  
Author(s):  
Fu-Yuan Wu ◽  
Andrei A. Arzamastsev ◽  
Roger H. Mitchell ◽  
Qiu-Li Li ◽  
Jing Sun ◽  
...  

2016 ◽  
Vol 88 (2) ◽  
pp. 105-113 ◽  
Author(s):  
A.Y. Barkov ◽  
A.A. Nikiforov ◽  
T.A.A. Halkoaho ◽  
J.P. Konnunaho

Minerals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 848
Author(s):  
Pavel Pripachkin ◽  
Tatiana Rundkvist ◽  
Nikolay Groshev ◽  
Aiya Bazai ◽  
Pavel Serov

The intermediate rocks classified as diorite-gneisses occur within the southern part of the Monchegorsk (2.5 Ga) layered mafic-ultramafic complex (Kola Peninsula, Russia). These diorite-gneisses belong to a block historically known as the diorite window (DW) block. The same rocks occur in a framing of the Monchegorsk complex. The DW block is predominantly composed of diorite-gneisses and, to a lesser degree, of amphibolites. Multi-ordinal banding, complex folding, boudinage and metamorphic transformations, garnet porphyroblasts, and tourmaline veinlets are typical of the diorite-gneisses. In accordance with the U-Pb isotope data, the age of the diorite-gneisses in the DW block is 2736.0 ± 4.6 Ma. The Sm-Nd mineral (garnet, biotite, and tourmaline) isochron for the DW rocks has yielded an age of 1806 ± 23 Ma (related to the processes of the Svecofennian orogeny). The DW diorite-gneisses are compared with the metadiorites of the Gabbro-10 massif. The latter is a part of the Monchegorsk complex, with U-Pb crystallization age of 2498 ± 6 Ma. On the basis of geological and isotope-geochemical data, it is shown that the DW rocks belong to the Archean basement while the Gabbro-10 metadiorites probably represent one of the late-magmatic phases of the Monchegorsk complex.


Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 186 ◽  
Author(s):  
Pavel A. Serov ◽  
Tamara B. Bayanova ◽  
Ekaterina N. Steshenko ◽  
Evgeniy L. Kunakkuzin ◽  
Elena S. Borisenko

The article presents new Sm–Nd and U–Pb geochronological data on rocks of the poorly studied Pados-Tundra Cr-bearing complex. It is part of the Notozero mafic–ultramafic complex (western Kola Peninsula) and occurs at the border of the Paleoproterozoic Lapland Granulite Belt and the Archean Belomorian composite terrain. The Pados-Tundra complex hosts two major zones, the Dunite and Orthopyroxenite Blocks. Dunites are associated with four levels of chromite mineralization. Isotope Sm–Nd studies of dunites, harzburgites, and orthopyroxenites from the central part of the complex have been carried out. The isochron Sm–Nd age on 11 whole-rock samples from a rhythmically layered series of the complex is 2485 ± 38 Ma; the mineral Sm–Nd isochron for harzburgites shows the age of 2475 ± 38 Ma. It corresponds with the time of large-scale rifting that originated in the Fennoscandian Shield. When the rhythmically layered series of the intrusion and its chromite mineralization were formed, hornblendite dykes intruded. The U–Pb and Sm–Nd research has estimated their age at ca. 2080 Ma, which is likely to correspond with the occurrence of the Lapland–Kola Ocean. According to isotope Sm–Nd dating on metamorphic minerals (rutile, amphibole), the age of postmetamorphic cooling of rocks in the complex to 650–600 °C is 1872 ± 76 Ma. The U–Pb age on rutile from a hornblendite dyke (1804 ± 10 Ma) indicates further cooling to 450–400 °C. The conducted research has determined the early Proterozoic age of rocks in the rhythmically layered series in the Pados-Tundra complex. It is close to the age of the Paleoproterozoic ore magmatic system in the Fennoscandian Shield that developed 2.53–2.40 Ga ago. Later episodes of alterations in rocks are directly related to main metamorphic episodes in the region at the turn of 1.9 Ga. Results of the current study expand the geography of the vast Paleoproterozoic East Scandinavian Large Igneous Province and can be applied for further studies of similar mafic–ultramafic complexes.


Sign in / Sign up

Export Citation Format

Share Document