pge mineralization
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 36)

H-INDEX

19
(FIVE YEARS 3)

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1287
Author(s):  
Giorgio Garuti ◽  
Evgenii V. Pushkarev ◽  
Irina A. Gottman ◽  
Federica Zaccarini

The mantle tectonite of the Kraka ophiolite contains several chromite deposits. Two of them consisting of high-Cr podiform chromitite—the Bolshoi Bashart located within harzburgite of the upper mantle transition zone and Prospect 33 located in the deep lherzolitic mantle—have been investigated. Both deposits are enveloped in dunite, and were formed by reaction between the mantle protolith and high-Mg, anhydrous magma, enriched in Al2O3, TiO2, and Na2O compared with boninite. The PGE mineralization is very poor (<100 ppb) in both deposits. Laurite (RuS2) is the most common PGM inclusion in chromite, although it is accompanied by erlichmanite (OsS2) and (Ir,Ni) sulfides in Prospect 33. Precipitation of PGM occurred at sulfur fugacity and temperatures of logƒS2 = (−3.0), 1300–1100 °C in Bolshoi Bashart, and logƒS2 = (−3.0/+1.0), 1100–800 °C in Prospect 33, respectively. The paucity of chromite-PGM mineralization compared with giant chromite deposits in the mantle tectonite in supra-subduction zones (SSZ) of the Urals (Ray-Iz, Kempirsai) is ascribed to the peculiar petrologic nature (low depleted lherzolite) and geodynamic setting (rifted continental margin?) of the Kraka ophiolite, which did not enable drainage of the upper mantle with a large volume of mafic magma.


2021 ◽  
pp. geochem2021-051
Author(s):  
Sarah Hashmi ◽  
Matthew I. Leybourne ◽  
Stewart Hamilton ◽  
Daniel Layton-Matthews ◽  
M. Beth McClenaghan

A geochemical study over the southwestern part of the South Range of the Sudbury Igneous Complex (SIC) was completed to assess the suitability of surficial media (humus, B-horizon soil and C-horizon soil) for delineating geochemical anomalies associated with Ni-Cu-PGE mineralization. Another objective was to test whether Na pyrophosphate can eliminate the effects of anthropogenic contamination in humus. Results of this study suggest that the natural geochemical signature of humus is strongly overprinted by anthropogenic contamination. Despite no indication of underlying or nearby mineralization, metal concentrations in humus samples by aqua regia collected downwind from smelting operations are higher compared to background, including up to 13 times higher for Pt, 12 times higher for Cu and 9 times higher for Ni. The high anthropogenic background masks the geogenic signal such that it is only apparent in humus samples collected in the vicinity of known Ni-Cu-PGE deposits. Results of this study also demonstrate that anthropogenically-derived atmospheric fallout also influences the upper B-horizon soil; however, lower B-horizon soil (at > 20 cm depth) and C-horizon soil (both developed in till) are not affected. Glacial dispersal from Ni-Cu-PGE mineralization is apparent in C-horizon till samples analyzed in this study. Compared to the background concentrations, the unaffected C-horizon till samples collected immediately down-ice of the low-sulfide, high precious metal (LSHPM) Vermilion Cu-Ni-PGE deposit are enriched over 20 times in Pt (203 ppb), Au (81 ppm) and Cu (963 ppm), and over 30 times in Ni (1283 ppm).Supplementary material:https://doi.org/10.6084/m9.figshare.c.5691080


2021 ◽  
Vol 59 (6) ◽  
pp. 1627-1660
Author(s):  
Dejan Milidragovic ◽  
Graham T. Nixon ◽  
James S. Scoates ◽  
James A. Nott ◽  
Dylan W. Spence

ABSTRACT The Early Jurassic Polaris Alaskan-type intrusion in the Quesnel accreted arc terrane of the North American Cordillera is a zoned, mafic-ultramafic intrusive body that contains two main styles of magmatic mineralization of petrologic and potential economic significance: (1) chromitite-associated platinum group element (PGE) mineralization hosted by dunite (±wehrlite); and (2) sulfide-associated Cu-PGE-Au mineralization hosted by olivine (±magnetite) clinopyroxenite, hornblendite, and gabbro-diorite. Dunite-hosted PGE mineralization is spatially associated with thin discontinuous layers and schlieren of chromitite and chromitiferous dunite and is characterized by marked enrichments in iridium-subgroup PGE (IPGE) relative to palladium-subgroup PGE (PPGE). Discrete grains of platinum group minerals (PGM) are exceedingly rare, and the bulk of the PGE are inferred to reside in solid solution within chromite±olivine. The absence of Pt-Fe alloys in dunite of the Polaris intrusion is atypical, as Pt-enrichment of dunite-hosted chromitite is widely regarded as a characteristic feature of Alaskan-type intrusions. This discrepancy appears to be consistent with the strong positive dependence of Pt solubility on the oxidation state of sulfide-undersaturated magmas. Through comparison with experimentally determined PGE solubilities, we infer that the earliest (highest temperature) olivine-chromite cumulates of the Polaris intrusion crystallized from a strongly oxidized ultramafic parental magma with an estimated log f(O2) &gt; FMQ+2. Parental magmas with oxygen fugacities more typical of volcanic arc settings [log f(O2) ∼ FMQ to ∼ FMQ+2] are, in turn, considered more favorable for co-precipitation of Pt-Fe alloys with olivine and chromite. More evolved clinopyroxene- and hornblende-rich cumulates of the Polaris intrusion contain low abundances of disseminated magmatic sulfides, consisting of pyrrhotite and chalcopyrite with minor pentlandite, pyrite, and rare bornite (≤12 wt.% total sulfides), which occur interstitially or as polyphase inclusions in silicates and oxides. The sulfide-bearing rocks are characterized by strong primitive mantle-normalized depletions in IPGE and enrichments in Cu-PPGE-Au, patterns that resemble those of other Alaskan-type intrusions and primitive arc lavas. The absolute abundances and sulfur-normalized whole-rock concentrations (Ci/S, serving as proxy for sulfide metal tenor) of chalcophile elements, including Cu/S, in sulfide-bearing rocks are highest in olivine clinopyroxenite. Sulfide saturation in the relatively evolved magmas of the Polaris intrusion, and Alaskan-type intrusions in general, appears to be intimately tied to the appearance of magnetite. Fractional crystallization of magnetite during the formation of olivine clinopyroxenite at Polaris resulted in reduction of the residual magma to log f(O2) ≤ FMQ+2, leading to segregation of an immiscible sulfide melt with high Cu/Fe and Cu/S, and high PGE and Au tenors. Continued fractionation resulted in sulfide melts that were progressively more depleted in precious and base chalcophile metals. The two styles of PGE mineralization in the Polaris Alaskan-type intrusion are interpreted to reflect the evolution of strongly oxidized, hydrous ultramafic parental magma(s) through intrinsic magmatic fractionation processes that potentially promote sulfide saturation in the absence of wallrock assimilation.


2021 ◽  
pp. 1-8
Author(s):  
John Parnell ◽  
Connor Brolly ◽  
Adrian J. Boyce

Abstract The episode of widespread organic carbon deposition marked by peak black shale sedimentation during the Palaeoproterozoic is also reflected in exceptionally abundant graphite deposits of this age. Worldwide anoxic/euxinic sediments were preserved as a deep crustal reservoir of both organic carbon, and sulphur in accompanying pyrite, both commonly >1 wt %. The carbon- and sulphur-rich Palaeoproterozoic crust interacted with mafic magma to cause Ni–Co–Cu–PGE mineralization over the next billion years, and much uranium currently produced is from Mesoproterozoic deposits nucleated upon older Palaeoproterozoic graphite. Palaeoproterozoic carbon deposition has thus left a unique legacy of both graphite deposits and long-term ore deposition.


2021 ◽  
Vol 63 (4) ◽  
pp. 341-367
Author(s):  
I. R. Rakhimov ◽  
A. V. Vishnevskiy ◽  
D. E. Saveliev ◽  
D. N. Salikhov ◽  
A. G. Vladimirov

Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 354
Author(s):  
Anatoly M. Sazonov ◽  
Aleksei E. Romanovsky ◽  
Igor F. Gertner ◽  
Elena A. Zvyagina ◽  
Tatyana S. Krasnova ◽  
...  

The gold and platinum-group elements (PGE) mineralization of the Guli and Kresty intrusions was formed in the process of polyphase magmatism of the central type during the Permian and Triassic age. It is suggested that native osmium and iridium crystal nuclei were formed in the mantle at earlier high-temperature events of magma generation of the mantle substratum in the interval of 765–545 Ma and were brought by meimechite melts to the area of development of magmatic bodies. The pulsating magmatism of the later phases assisted in particle enlargement. Native gold was crystallized at a temperature of 415–200 °C at the hydrothermal-metasomatic stages of the meimechite, melilite, foidolite and carbonatite magmatism. The association of minerals of precious metals with oily, resinous and asphaltene bitumen testifies to the genetic relation of the mineralization to carbonaceous metasomatism. Identifying the carbonaceous gold and platinoid ore formation associated genetically with the parental formation of ultramafic, alkaline rocks and carbonatites is suggested.


2021 ◽  
Author(s):  
Rundkvist T. V. ◽  
◽  
Pripachkin P. V. ◽  
Groshev N. Yu. ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document