Distinct manifestation of cognitive deficits associate with different resting-state network disruptions in non-demented patients with Parkinson’s disease

2018 ◽  
Vol 265 (3) ◽  
pp. 688-700 ◽  
Author(s):  
Kazuya Kawabata ◽  
Hirohisa Watanabe ◽  
Kazuhiro Hara ◽  
Epifanio Bagarinao ◽  
Noritaka Yoneyama ◽  
...  
2014 ◽  
Vol 36 (1) ◽  
pp. 199-212 ◽  
Author(s):  
Hugo-Cesar Baggio ◽  
Bàrbara Segura ◽  
Roser Sala-Llonch ◽  
Maria-José Marti ◽  
Francesc Valldeoriola ◽  
...  

2020 ◽  
Author(s):  
David M. Cole ◽  
Bahram Mohammadi ◽  
Maria Milenkova ◽  
Katja Kollewe ◽  
Christoph Schrader ◽  
...  

ABSTRACTDopamine agonist (DA) medications commonly used to treat, or ‘normalise’, motor symptoms of Parkinson’s disease (PD) may lead to cognitive-neuropsychiatric side effects, such as increased impulsivity in decision-making. Subject-dependent variation in the neural response to dopamine modulation within cortico-basal ganglia circuitry is thought to play a key role in these latter, non-motor DA effects. This neuroimaging study combined resting-state functional magnetic resonance imaging (fMRI) with DA modification in patients with idiopathic PD, investigating whether brain ‘resting-state network’ (RSN) functional connectivity metrics identify disease-relevant effects of dopamine on systems-level neural processing. By comparing patients both ‘On’ and ‘Off’ their DA medications with age-matched, un-medicated healthy control subjects (HCs), we identified multiple non-normalising DA effects on frontal and basal ganglia RSN cortico-subcortical connectivity patterns in PD. Only a single isolated, potentially ‘normalising’, DA effect on RSN connectivity in sensori-motor systems was observed, within cerebro-cerebellar neurocircuitry. Impulsivity in reward-based decision-making was positively correlated with ventral striatal connectivity within basal ganglia circuitry in HCs, but not in PD patients. Overall, we provide brain systems-level evidence for anomalous DA effects in PD on large-scale networks supporting cognition and motivated behaviour. Moreover, findings suggest that dysfunctional striatal and basal ganglia signalling patterns in PD are compensated for by increased recruitment of other cortico-subcortical and cerebro-cerebellar systems.


2021 ◽  
Author(s):  
Marina C. Ruppert ◽  
Andrea Greuel ◽  
Julia Freigang ◽  
Masoud Tahmasian ◽  
Franziska Maier ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaojuan Dan ◽  
Yang Hu ◽  
Junyan Sun ◽  
Linlin Gao ◽  
Yongtao Zhou ◽  
...  

Background: Cognitive impairment is one of the most prominent non-motor symptoms in Parkinson's disease (PD), due in part to known cerebellar dysfunctions. Furthermore, previous studies have reported altered cerebellar functional connectivity (FC) in PD patients. Yet whether these changes are also due to the cognitive deficits in PD remain unclear.Methods: A total of 122 non-dementia participants, including 64 patients with early PD and 58 age- and gender-matched elderly controls were stratified into four groups based on their cognitive status (normal cognition vs. cognitive impairment). Cerebellar volumetry and FC were investigated by analyzing, respectively, structural and resting-state functional MRI data among groups using quality control and quantitative measures. Correlation analysis between MRI metrics and clinical features (motor and cognitive scores) were performed.Results: Compared to healthy control subjects with no cognitive deficits, altered cerebellar FC were observed in early PD participants with both motor and cognitive deficits, but not in PD patients with normal cognition, nor elderly subjects showing signs of a cognitive impairment. Moreover, connectivity between the “motor” cerebellum and SMA was positively correlated with motor scores, while intracerebellar connectivity was positively correlated with cognitive scores in PD patients with cognitive impairment. No cerebellar volumetric difference was observed between groups.Conclusions: These findings show that altered cerebellar FC during resting state in early PD patients may be driven not solely by the motor deficits, but by cognitive deficits as well, hence highlighting the interplay between motor and cognitive functioning, and possibly reflecting compensatory mechanisms, in the early PD.


Author(s):  
Alexander V. Lebedev ◽  
Eric Westman ◽  
Andrew Simmons ◽  
Aleksandra Lebedeva ◽  
Françoise J. Siepel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document