FGF2 deficit during development leads to specific neuronal cell loss in the enteric nervous system

2012 ◽  
Vol 139 (1) ◽  
pp. 47-57 ◽  
Author(s):  
Cornelia Irene Hagl ◽  
Elvira Wink ◽  
Sabrina Scherf ◽  
Sabine Heumüller-Klug ◽  
Barbara Hausott ◽  
...  
2017 ◽  
Vol 114 (18) ◽  
pp. E3709-E3718 ◽  
Author(s):  
Subhash Kulkarni ◽  
Maria-Adelaide Micci ◽  
Jenna Leser ◽  
Changsik Shin ◽  
Shiue-Cheng Tang ◽  
...  

According to current dogma, there is little or no ongoing neurogenesis in the fully developed adult enteric nervous system. This lack of neurogenesis leaves unanswered the question of how enteric neuronal populations are maintained in adult guts, given previous reports of ongoing neuronal death. Here, we confirm that despite ongoing neuronal cell loss because of apoptosis in the myenteric ganglia of the adult small intestine, total myenteric neuronal numbers remain constant. This observed neuronal homeostasis is maintained by new neurons formed in vivo from dividing precursor cells that are located within myenteric ganglia and express both Nestin and p75NTR, but not the pan-glial marker Sox10. Mutation of the phosphatase and tensin homolog gene in this pool of adult precursors leads to an increase in enteric neuronal number, resulting in ganglioneuromatosis, modeling the corresponding disorder in humans. Taken together, our results show significant turnover and neurogenesis of adult enteric neurons and provide a paradigm for understanding the enteric nervous system in health and disease.


1997 ◽  
Vol 14 (6) ◽  
pp. 385-398 ◽  
Author(s):  
STANLEY A. BALDWIN ◽  
TONYA GIBSON ◽  
C. TODD CALLIHAN ◽  
PATRICK G. SULLIVAN ◽  
ERICK PALMER ◽  
...  

1998 ◽  
Vol 274 (6) ◽  
pp. G978-G983 ◽  
Author(s):  
Karen E. Hall ◽  
John W. Wiley

Understanding of the pathophysiology of neuronal injury has advanced remarkably in the last decade. This largely reflects the burgeoning application of molecular techniques to neuronal cell biology. Although there is certainly no consensus hypothesis that explains all aspects of neuronal injury, a number of interesting observations have been published. In this brief review, we examine mechanisms that appear to contribute to the pathophysiology of neuronal injury, including altered Ca2+ signaling, activation of the protease cascades coupled to apoptosis, and mitochondrial deenergization associated with release of cytochrome c, production of free radicals, and oxidative injury. Finally, evidence for neuroprotective mechanisms that may ameliorate cell injury and/or death are reviewed. Little information has been published regarding the mechanisms that mediate injury in the enteric nervous system, necessitating a focus on models outside the gastrointestinal (GI) tract, which may provide insights into enteric nervous system injury.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Ratchaniporn Kongsui ◽  
Napatr Sriraksa ◽  
Sitthisak Thongrong

The systemic administration of lipopolysaccharide (LPS) has been recognized to induce neuroinflammation which plays a significant role in the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. In this study, we aimed to determine the protective effect of Zingiber cassumunar (Z. cassumunar) or Phlai (in Thai) against LPS-induced neuronal cell loss and the upregulation of glial fibrillary acidic protein (GFAP) of astrocytes in the hippocampus. Adult male Wistar rats were orally administered with Z. cassumunar extract at various doses (50, 100, and 200 mg/kg body weight) for 14 days before a single injection of LPS (250 μg/kg/i.p.). The results indicated that LPS-treated animals exhibited neuronal cell loss and the activation of astrocytes and also increased proinflammatory cytokine interleukin- (IL-) 1β in the hippocampus. Pretreatment with Z. cassumunar markedly reduced neuronal cell loss in the hippocampus. In addition, Z. cassumunar extract at a dose of 200 mg/kg BW significantly suppressed the inflammatory response by reducing the expression of GFAP and IL-1ß in the hippocampus. Therefore, the results suggested that Z. cassumunar extract might be valuable as a neuroprotective agent in neuroinflammation-induced brain damage. However, further investigations are essential to validate the possible active ingredients and mechanisms of its neuroprotective effect.


2013 ◽  
Vol 14 (1) ◽  
pp. 112 ◽  
Author(s):  
Dae-Yong Song ◽  
Ha-Nul Yu ◽  
Chae-Ri Park ◽  
Jin-Sook Lee ◽  
Ji-Yong Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document