Determination of buckling loads for wooden beams using the elastic models

2019 ◽  
Vol 89 (8) ◽  
pp. 1501-1512 ◽  
Author(s):  
Stanislav Kotšmíd ◽  
Pavel Beňo
Keyword(s):  
1983 ◽  
Vol 4 ◽  
pp. 260-265 ◽  
Author(s):  
D. S. Sodhi ◽  
F. D. Haynes ◽  
K. Kato ◽  
K. Hirayama

Experiments were performed to determine the forces required to buckle a floating ice sheet pushing against structures of different widths. The characteristic length of each ice sheet was determined to enable a comparison to be made between the theoretical and experimental results.Most of the experimental data points are within the range of the theoretical values of normalized buckling loads for frictionless and hinged boundary conditions, which represent the extreme situations for ice-structure contact. Thus, the agreement between the theoretical and experimental buckling loads is considered to be good. Photographs of the buckled ice sheets show a resemblance to the theoretical mode of buckling.


1983 ◽  
Vol 4 ◽  
pp. 260-265 ◽  
Author(s):  
D. S. Sodhi ◽  
F. D. Haynes ◽  
K. Kato ◽  
K. Hirayama

Experiments were performed to determine the forces required to buckle a floating ice sheet pushing against structures of different widths. The characteristic length of each ice sheet was determined to enable a comparison to be made between the theoretical and experimental results. Most of the experimental data points are within the range of the theoretical values of normalized buckling loads for frictionless and hinged boundary conditions, which represent the extreme situations for ice-structure contact. Thus, the agreement between the theoretical and experimental buckling loads is considered to be good. Photographs of the buckled ice sheets show a resemblance to the theoretical mode of buckling.


Author(s):  
H Ahmed ◽  
JF Durodola ◽  
RG Beale

The objective of this article is to introduce and assess a new plate buckling analysis procedure which can be used for quick, approximate analysis of buckling loads in preliminary design. The method is applied to a range of plate edge support condition combinations including many where results are not readily available. The results obtained using the new procedure were compared against theoretical formulae available in the literature and by finite element analyses with good agreement.


Author(s):  
Hina Arif ◽  
Jaan Lellep

Buckling of nanobeams and nanorods is treated with the help of the nonlocal theory of elasticity. The nanobeams under consideration have piecewise constant dimensions of cross sections and are weakened with cracks or cracklike defects emanating at the re-entrant corners of steps. A general method for determination of critical buckling loads of stepped nanobeams with cracks is developed. The influence of defects on the critical buckling load is evaluated numerically and compared with similar results of other researchers.


2018 ◽  
Vol 30 (3) ◽  
Author(s):  
Ofondu I.O. ◽  
Ikwueze E.U. ◽  
Ike C.C.

The Stodola-Vianello iteration method was implemented in this work to determine the critical buckling load of an Euler column of length l with fixed end (x = 0) and pinned end (x = l), where the longitudinal axis is the x-direction.The critical buckling loads were found to be variable, depending on the x-coordinate. Integration and the Rayleigh quotients were used to find average buckling coefficients. First iteration gave relative errors of 4% using integration and 2.5% using Rayleigh quotient.Second iteration gave average relative errorsless than 1% for both the integration and the Rayleigh quotients. Better estimates of the critical buckling loads were obtained using the Rayleigh quotient in the Stodola-Vianello’s iteration.


Sign in / Sign up

Export Citation Format

Share Document