scholarly journals A receptance-based method for frequency assignment via coupling of subsystems

2019 ◽  
Vol 90 (2) ◽  
pp. 449-465
Author(s):  
Sung-Han Tsai ◽  
Huajiang Ouyang ◽  
Jen-Yuan Chang

Abstract This paper presents a theoretical study of the frequency assignment problem of a coupled system via structural modification of one of its subsystems. It deals with the issue in which the available modifications are not simple; for example, they are not point masses, grounded springs, or spring-mass oscillators. The proposed technique is derived based on receptance coupling technique and formulated as an optimization problem. Only a few receptances at the connection ends of each subsystem are required in the structural modification process. The applicability of the technique is demonstrated on a simulated rotor system. The results show that both bending natural frequencies and torsional natural frequencies can be assigned using a modifiable joint, either separately or simultaneously. In addition, an extension is made on a previously proposed torsional receptance measurement technique to estimate the rotational receptance in bending. Numerical simulations suggest that the extended technique is able to produce accurate estimations and thus is appropriate for this frequency assignment problem of concern.

2016 ◽  
Vol 8 (1) ◽  
pp. 5-15
Author(s):  
László Aszalós ◽  
Mária Bakó

Abstract Distance-constrained colouring is a mathematical model of the frequency assignment problem. This colouring can be treated as an optimization problem so we can use the toolbar of the optimization to solve concrete problems. In this paper, we show performance of distance-constrained grid colouring for two methods which are good in map colouring.


2010 ◽  
Vol 37 (12) ◽  
pp. 2152-2163 ◽  
Author(s):  
Ayed A. Salman ◽  
Imtiaz Ahmad ◽  
Mahamed G.H. Omran ◽  
Mohammad Gh. Mohammad

10.29007/x3qf ◽  
2019 ◽  
Author(s):  
Sumonta Ghosh ◽  
Prakhar Pogde ◽  
Narayan C. Debnath ◽  
Anita Pal

L(h,k) Labeling in graph came into existence as a solution to frequency assignment problem. To reduce interference a frequency in the form of non negative integers is assigned to each radio or TV transmitters located at various places. After L(h,k) labeling, L(h,k, j) labeling is introduced to reduce noise in the communication network. We investigated the graph obtained by Cartesian Product betweenCompleteBipartiteGraphwithPathandCycle,i. e.,Km,n×Pr andKm,n×Cr byapplying L(3,2,1)Labeling. The L(3,2,1) Labeling of a graph G is the difference between the highest and the lowest labels used in L(3,2,1) and is denoted by λ3,2,1(G) In this paper we have designed three suitable algorithms to label the graphs Km,n × Pr and Km,n × Cr . We have also analyzed the time complexity of each algorithm with illustration.


Sign in / Sign up

Export Citation Format

Share Document