Effect of neuromuscular electrical stimulation intensity over the tibial nerve trunk on triceps surae muscle fatigue

2013 ◽  
Vol 114 (2) ◽  
pp. 317-329 ◽  
Author(s):  
Aude-Clémence M. Doix ◽  
Boris Matkowski ◽  
Alain Martin ◽  
Karin Roeleveld ◽  
Serge S. Colson
2011 ◽  
Vol 110 (3) ◽  
pp. 627-637 ◽  
Author(s):  
A. J. Bergquist ◽  
J. M. Clair ◽  
D. F. Collins

Neuromuscular electrical stimulation (NMES) can be delivered over a nerve trunk or muscle belly and can generate contractions by activating motor (peripheral pathway) and sensory (central pathway) axons. In the present experiments, we compared the peripheral and central contributions to plantar flexion contractions evoked by stimulation over the tibial nerve vs. the triceps surae muscles. Generating contractions through central pathways follows Henneman's size principle, whereby low-threshold motor units are activated first, and this may have advantages for rehabilitation. Statistical analyses were performed on data from trials in which NMES was delivered to evoke 10–30% maximum voluntary torque 2–3 s into the stimulation (Time1). Two patterns of stimulation were delivered: 1) 20 Hz for 8 s; and 2) 20–100-20 Hz for 3–2-3 s. Torque and soleus electromyography were quantified at the beginning (Time1) and end (Time2; 6–7 s into the stimulation) of each stimulation train. H reflexes (central pathway) and M waves (peripheral pathway) were quantified. Motor unit activity that was not time-locked to each stimulation pulse as an M wave or H reflex (“asynchronous” activity) was also quantified as a second measure of central recruitment. Torque was not different for stimulation over the nerve or the muscle. In contrast, M waves were approximately five to six times smaller, and H reflexes were approximately two to three times larger during NMES over the nerve vs. the muscle. Asynchronous activity increased by 50% over time, regardless of the stimulation location or pattern, and was largest during NMES over the muscle belly. Compared with NMES over the triceps surae muscles, NMES over the tibial nerve produced contractions with a relatively greater central contribution, and this may help reduce muscle atrophy and fatigue when NMES is used for rehabilitation.


2014 ◽  
Vol 116 (10) ◽  
pp. 1281-1289 ◽  
Author(s):  
Daria Neyroud ◽  
David Dodd ◽  
Julien Gondin ◽  
Nicola A. Maffiuletti ◽  
Bengt Kayser ◽  
...  

We compared the extent and origin of muscle fatigue induced by short-pulse-low-frequency [conventional (CONV)] and wide-pulse-high-frequency (WPHF) neuromuscular electrical stimulation. We expected CONV contractions to mainly originate from depolarization of axonal terminal branches (spatially determined muscle fiber recruitment) and WPHF contractions to be partly produced via a central pathway (motor unit recruitment according to size principle). Greater neuromuscular fatigue was, therefore, expected following CONV compared with WPHF. Fourteen healthy subjects underwent 20 WPHF (1 ms-100 Hz) and CONV (50 μs-25 Hz) evoked isometric triceps surae contractions (work/rest periods 20:40 s) at an initial target of 10% of maximal voluntary contraction (MVC) force. Force-time integral of the 20 evoked contractions (FTI) was used as main index of muscle fatigue; MVC force loss was also quantified. Central and peripheral fatigue were assessed by voluntary activation level and paired stimulation amplitudes, respectively. FTI in WPHF was significantly lower than in CONV (21,717 ± 11,541 vs. 37,958 ± 9,898 N·s P<0,001). The reductions in MVC force (WPHF: −7.0 ± 2.7%; CONV: −6.2 ± 2.5%; P < 0.01) and paired stimulation amplitude (WPHF: −8.0 ± 4.0%; CONV: −7.4 ± 6.1%; P < 0.001) were similar between conditions, whereas no change was observed for voluntary activation level ( P > 0.05). Overall, our results showed a different motor unit recruitment pattern between the two neuromuscular electrical stimulation modalities with a lower FTI indicating greater muscle fatigue for WPHF, possibly limiting the presumed benefits for rehabilitation programs.


2016 ◽  
Vol 55 (2) ◽  
pp. 179-189 ◽  
Author(s):  
Jenny W.H. Lou ◽  
Austin J. Bergquist ◽  
Abdulaziz Aldayel ◽  
Jennifer Czitron ◽  
David F. Collins

2012 ◽  
Vol 92 (9) ◽  
pp. 1187-1196 ◽  
Author(s):  
Jennifer E. Stevens-Lapsley ◽  
Jaclyn E. Balter ◽  
Pamela Wolfe ◽  
Donald G. Eckhoff ◽  
Robert S. Schwartz ◽  
...  

BackgroundNeuromuscular electrical stimulation (NMES) can facilitate the recovery of quadriceps muscle strength after total knee arthroplasty (TKA), yet the optimal intensity (dosage) of NMES and its effect on strength after TKA have yet to be determined.ObjectiveThe primary objective of this study was to determine whether the intensity of NMES application was related to the recovery of quadriceps muscle strength early after TKA. A secondary objective was to quantify quadriceps muscle fatigue and activation immediately after NMES to guide decisions about the timing of NMES during rehabilitation sessions.DesignThis study was an observational experimental investigation.MethodsData were collected from 30 people who were 50 to 85 years of age and who received NMES after TKA. These people participated in a randomized controlled trial in which they received either standard rehabilitation or standard rehabilitation plus NMES to the quadriceps muscle to mitigate strength loss. For the NMES intervention group, NMES was applied 2 times per day at the maximal tolerable intensity for 15 contractions beginning 48 hours after surgery over the first 6 weeks after TKA. Neuromuscular electrical stimulation training intensity and quadriceps muscle strength and activation were assessed before surgery and 3.5 and 6.5 weeks after TKA.ResultsAt 3.5 weeks, there was a significant association between NMES training intensity and a change in quadriceps muscle strength (R2=.68) and activation (R2=.22). At 6.5 weeks, NMES training intensity was related to a change in strength (R2=.25) but not to a change in activation (R2=.00). Furthermore, quadriceps muscle fatigue occurred during NMES sessions at 3.5 and 6.5 weeks, whereas quadriceps muscle activation did not change.LimitationsSome participants reached the maximal stimulator output during at least 1 treatment session and might have tolerated more stimulation.ConclusionsHigher NMES training intensities were associated with greater quadriceps muscle strength and activation after TKA.


Sign in / Sign up

Export Citation Format

Share Document