Complexity and dynamics of switched human balance control during quiet standing

2015 ◽  
Vol 109 (4-5) ◽  
pp. 469-478 ◽  
Author(s):  
Salam Nema ◽  
Piotr Kowalczyk ◽  
Ian Loram
2006 ◽  
Vol 23 (3) ◽  
pp. 315-323 ◽  
Author(s):  
William H. Paloski ◽  
Scott J. Wood ◽  
Alan H. Feiveson ◽  
F. Owen Black ◽  
Emma Y. Hwang ◽  
...  

2020 ◽  
Vol 10 (24) ◽  
pp. 8886
Author(s):  
Carlo Ferraresi ◽  
Daniela Maffiodo ◽  
Walter Franco ◽  
Giovanni Gerardo Muscolo ◽  
Carlo De Benedictis ◽  
...  

Nowadays, increasing attention is being paid to techniques aimed at assessing a subject’s ability to maintain or regain control of balance, thus reducing the risk of falls. To this end, posturographic analyses are performed in different clinical settings, both in unperturbed and perturbed conditions. This article presents a new Hardware-In-the-Loop (HIL) equipment designed for the development of an automatic perturbator for postural control analysis, capable of providing controlled mechanical stimulation by means of an impulsive force exerted on a given point of the body. The experimental equipment presented here includes the perturbator and emulates its interaction with both the subject’s body and the operator performing the test. The development of the perturbator and of the entire HIL equipment is described, including component selection, modeling of the entire system, and experimentally verified simulations used to study and define the most appropriate control laws.


2017 ◽  
Vol 2017 (0) ◽  
pp. 612
Author(s):  
Motomichi SONOBE ◽  
Hirotaka YAMAGUCHI ◽  
Junichi HINO ◽  
Kyoko SHIBATA ◽  
Yoshio INOUE

2009 ◽  
Vol 19 (2) ◽  
pp. 026110 ◽  
Author(s):  
John Milton ◽  
Juan Luis Cabrera ◽  
Toru Ohira ◽  
Shigeru Tajima ◽  
Yukinori Tonosaki ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Keli Shen ◽  
Ahmed Chemori ◽  
Mitsuhiro Hayashibe

The study of human balance recovery strategies is important for human balance rehabilitation and humanoid robot balance control. To date, many efforts have been made to improve balance during quiet standing and walking motions. Arm usage (arm strategy) has been proposed to control the balance during walking motion in the literature. However, limited research exists on the contributions of the arm strategy for balance recovery during quiet standing along with ankle and hip strategy. Therefore, in this study, we built a simplified model with arms and proposed a controller based on nonlinear model predictive control to achieve human-like balance control. Three arm states of the model, namely, active arms, passive arms, and fixed arms, were considered to discuss the contributions of arm usage to human balance recovery during quiet standing. Furthermore, various indexes such as root mean square deviation of joint angles and recovery energy consumption were verified to reveal the mechanism behind arm strategy employment. In this study, we demonstrate to computationally reproduce human-like balance recovery with and without arm rotation during quiet standing while applying different magnitudes of perturbing forces on the upper body. In addition, the conducted human balance experiments are presented as supplementary information in this paper to demonstrate the concept on a typical example of arm strategy.


2015 ◽  
Vol 32 (3) ◽  
pp. 200-205 ◽  
Author(s):  
Giuseppe Annino ◽  
Francesco Palazzo ◽  
Pietro Lebone ◽  
Alfio Caronti ◽  
Mauro Lombardo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document