The time-delayed inverted pendulum: Implications for human balance control

2009 ◽  
Vol 19 (2) ◽  
pp. 026110 ◽  
Author(s):  
John Milton ◽  
Juan Luis Cabrera ◽  
Toru Ohira ◽  
Shigeru Tajima ◽  
Yukinori Tonosaki ◽  
...  
2006 ◽  
Vol 23 (3) ◽  
pp. 315-323 ◽  
Author(s):  
William H. Paloski ◽  
Scott J. Wood ◽  
Alan H. Feiveson ◽  
F. Owen Black ◽  
Emma Y. Hwang ◽  
...  

2020 ◽  
Vol 10 (24) ◽  
pp. 8886
Author(s):  
Carlo Ferraresi ◽  
Daniela Maffiodo ◽  
Walter Franco ◽  
Giovanni Gerardo Muscolo ◽  
Carlo De Benedictis ◽  
...  

Nowadays, increasing attention is being paid to techniques aimed at assessing a subject’s ability to maintain or regain control of balance, thus reducing the risk of falls. To this end, posturographic analyses are performed in different clinical settings, both in unperturbed and perturbed conditions. This article presents a new Hardware-In-the-Loop (HIL) equipment designed for the development of an automatic perturbator for postural control analysis, capable of providing controlled mechanical stimulation by means of an impulsive force exerted on a given point of the body. The experimental equipment presented here includes the perturbator and emulates its interaction with both the subject’s body and the operator performing the test. The development of the perturbator and of the entire HIL equipment is described, including component selection, modeling of the entire system, and experimentally verified simulations used to study and define the most appropriate control laws.


2020 ◽  
Vol 15 (9) ◽  
Author(s):  
Kyle W. Siegrist ◽  
Ryan M. Kramer ◽  
James R. Chagdes

Abstract Understanding the mechanisms behind human balance has been a subject of interest as various postural instabilities have been linked to neuromuscular diseases (e.g., Parkinson's, multiple sclerosis, and concussion). This paper presents a method to characterize an individual's postural stability and estimate of their neuromuscular feedback control parameters. The method uses a generated topological mapping between a subject's experimental data and a dataset consisting of time-series realizations generated using an inverted pendulum mathematical model of upright balance. The performance of the method is quantified using a set of validation time-series realizations with known stability and neuromuscular control parameters. The method was found to have an overall sensitivity of 85.1% and a specificity of 91.9%. Furthermore, the method was most accurate when identifying limit cycle oscillations (LCOs) with a sensitivity of 91.1% and a specificity of 97.6%. Such a method has the capability of classifying an individual's stability and revealing possible neuromuscular impairment related to balance control, ultimately providing useful information to clinicians for diagnostic and rehabilitation purposes.


2015 ◽  
Vol 109 (4-5) ◽  
pp. 469-478 ◽  
Author(s):  
Salam Nema ◽  
Piotr Kowalczyk ◽  
Ian Loram

2017 ◽  
Vol 2017 (0) ◽  
pp. 612
Author(s):  
Motomichi SONOBE ◽  
Hirotaka YAMAGUCHI ◽  
Junichi HINO ◽  
Kyoko SHIBATA ◽  
Yoshio INOUE

Sign in / Sign up

Export Citation Format

Share Document