K-Cl cotransporter KCC2—a moonlighting protein in excitatory and inhibitory synapse development and function

2014 ◽  
Vol 467 (4) ◽  
pp. 615-624 ◽  
Author(s):  
Peter Blaesse ◽  
Tobias Schmidt
2013 ◽  
Vol 200 (3) ◽  
pp. 321-336 ◽  
Author(s):  
Katherine L. Pettem ◽  
Daisaku Yokomaku ◽  
Hideto Takahashi ◽  
Yuan Ge ◽  
Ann Marie Craig

Rare variants in MDGAs (MAM domain–containing glycosylphosphatidylinositol anchors), including multiple protein-truncating deletions, are linked to autism and schizophrenia, but the function of these genes is poorly understood. Here, we show that MDGA1 and MDGA2 bound to neuroligin-2 inhibitory synapse–organizing protein, also implicated in neurodevelopmental disorders. MDGA1 inhibited the synapse-promoting activity of neuroligin-2, without altering neuroligin-2 surface trafficking, by inhibiting interaction of neuroligin-2 with neurexin. MDGA binding and suppression of synaptogenic activity was selective for neuroligin-2 and not neuroligin-1 excitatory synapse organizer. Overexpression of MDGA1 in cultured rat hippocampal neurons reduced inhibitory synapse density without altering excitatory synapse density. Furthermore, RNAi-mediated knockdown of MDGA1 selectively increased inhibitory but not excitatory synapse density. These results identify MDGA1 as one of few identified negative regulators of synapse development with a unique selectivity for inhibitory synapses. These results also place MDGAs in the neurexin–neuroligin synaptic pathway implicated in neurodevelopmental disorders and support the idea that an imbalance between inhibitory and excitatory synapses may contribute to these disorders.


2014 ◽  
Vol 112 (1) ◽  
pp. E65-E72 ◽  
Author(s):  
Carmen E. Flores ◽  
Irina Nikonenko ◽  
Pablo Mendez ◽  
Jean-Marc Fritschy ◽  
Shiva K. Tyagarajan ◽  
...  

Maintaining a proper balance between excitation and inhibition is essential for the functioning of neuronal networks. However, little is known about the mechanisms through which excitatory activity can affect inhibitory synapse plasticity. Here we used tagged gephyrin, one of the main scaffolding proteins of the postsynaptic density at GABAergic synapses, to monitor the activity-dependent adaptation of perisomatic inhibitory synapses over prolonged periods of time in hippocampal slice cultures. We find that learning-related activity patterns known to induce N-methyl-d-aspartate (NMDA) receptor-dependent long-term potentiation and transient optogenetic activation of single neurons induce within hours a robust increase in the formation and size of gephyrin-tagged clusters at inhibitory synapses identified by correlated confocal electron microscopy. This inhibitory morphological plasticity was associated with an increase in spontaneous inhibitory activity but did not require activation of GABAA receptors. Importantly, this activity-dependent inhibitory plasticity was prevented by pharmacological blockade of Ca2+/calmodulin-dependent protein kinase II (CaMKII), it was associated with an increased phosphorylation of gephyrin on a site targeted by CaMKII, and could be prevented or mimicked by gephyrin phospho-mutants for this site. These results reveal a homeostatic mechanism through which activity regulates the dynamics and function of perisomatic inhibitory synapses, and they identify a CaMKII-dependent phosphorylation site on gephyrin as critically important for this process.


2012 ◽  
Vol 15 (3) ◽  
pp. 389-398 ◽  
Author(s):  
Hideto Takahashi ◽  
Kei-ichi Katayama ◽  
Kazuhiro Sohya ◽  
Hiroyuki Miyamoto ◽  
Tuhina Prasad ◽  
...  

2011 ◽  
Vol 31 (2) ◽  
pp. 687-699 ◽  
Author(s):  
M. Sun ◽  
G. Xing ◽  
L. Yuan ◽  
G. Gan ◽  
D. Knight ◽  
...  

2012 ◽  
Vol 110 (1) ◽  
pp. 336-341 ◽  
Author(s):  
K. Lee ◽  
Y. Kim ◽  
S.-J. Lee ◽  
Y. Qiang ◽  
D. Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document