synapse development
Recently Published Documents


TOTAL DOCUMENTS

203
(FIVE YEARS 41)

H-INDEX

48
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Alena Kozlova ◽  
Siwei Zhang ◽  
Alex V. Kotlar ◽  
Brendan Jamison ◽  
Hanwen Zhang ◽  
...  

Identifying causative gene(s) within disease-associated large genomic regions of copy number variants (CNVs) is challenging. Here, by targeted sequencing of genes within schizophrenia (SZ)-associated CNVs in 1,779 SZ cases and 1,418 controls, we identified three rare putative loss-of-function (LoF) mutations in OTU deubiquitinase 7A (OTUD7A) within the 15q13.3 deletion in cases, but none in controls. To tie OTUD7A LoF with any SZ-relevant cellular phenotypes, we modeled the OTUD7A LoF mutation, rs757148409, in human induced pluripotent stem cell (hiPSC)-derived induced excitatory neurons (iNs) by CRISPR/Cas9 engineering. The mutant iNs showed a ~50% decrease in OTUD7A expression without undergoing nonsense-mediated mRNA decay. The mutant iNs also exhibited marked reduction of dendritic complexity, density of synaptic proteins GluA1 and PSD-95, and neuronal network activity. Congruent with the neuronal phenotypes in mutant iNs, our transcriptomic analysis showed that the set of OTUD7A LoF-downregulated genes was enriched for those relating to synapse development and function, and was associated with SZ and other neuropsychiatric disorders. These results suggest that OTUD7A LoF impairs synapse development and neuronal function in human neurons, providing mechanistic insight into the possible role of OTUD7A in driving neuropsychiatric phenotypes associated with the 15q13.3 deletion.


2021 ◽  
pp. 105595
Author(s):  
Sergio Hernández-Díaz ◽  
Saurav Ghimire ◽  
Carla Montecinos-Oliva ◽  
Irene Sanchez-Mirasierra ◽  
Jef Swerts ◽  
...  
Keyword(s):  

Development ◽  
2021 ◽  
Vol 148 (21) ◽  
Author(s):  
Lauren J. Walker ◽  
Rebecca A. Roque ◽  
Maria F. Navarro ◽  
Michael Granato

ABSTRACT The receptor tyrosine kinase MuSK, its co-receptor Lrp4 and the Agrin ligand constitute a signaling pathway that is crucial in axial muscle for neuromuscular synapse development, yet whether this pathway functions similarly in appendicular muscle is unclear. Here, using the larval zebrafish pectoral fin, equivalent to tetrapod forelimbs, we show that, similar to axial muscle, developing appendicular muscles form aneural acetylcholine receptor (AChR) clusters prior to innervation. As motor axons arrive, neural AChR clusters form, eventually leading to functional synapses in a MuSK-dependent manner. We find that loss of Agrin or Lrp4 function, which abolishes synaptic AChR clusters in axial muscle, results in enlarged presynaptic nerve regions and progressively expanding appendicular AChR clusters, mimicking the consequences of motoneuron ablation. Moreover, musk depletion in lrp4 mutants partially restores synaptic AChR patterning. Combined, our results provide compelling evidence that, in addition to the canonical pathway in which Agrin/Lrp4 stimulates MuSK activity, Agrin/Lrp4 signaling in appendicular muscle constrains MuSK-dependent neuromuscular synapse organization. Thus, we reveal a previously unappreciated role for Agrin/Lrp4 signaling, thereby highlighting distinct differences between axial and appendicular synapse development.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Eunkyung Lie ◽  
Yeji Yeo ◽  
Eun-Jae Lee ◽  
Wangyong Shin ◽  
Kyungdeok Kim ◽  
...  

AbstractMany synaptic adhesion molecules positively regulate synapse development and function, but relatively little is known about negative regulation. SALM4/Lrfn3 (synaptic adhesion-like molecule 4/leucine rich repeat and fibronectin type III domain containing 3) inhibits synapse development by suppressing other SALM family proteins, but whether SALM4 also inhibits synaptic function and specific behaviors remains unclear. Here we show that SALM4-knockout (Lrfn3−/−) male mice display enhanced contextual fear memory consolidation (7-day post-training) but not acquisition or 1-day retention, and exhibit normal cued fear, spatial, and object-recognition memory. The Lrfn3−/− hippocampus show increased currents of GluN2B-containing N-methyl-d-aspartate (NMDA) receptors (GluN2B-NMDARs), but not α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors (AMPARs), which requires the presynaptic receptor tyrosine phosphatase PTPσ. Chronic treatment of Lrfn3−/− mice with fluoxetine, a selective serotonin reuptake inhibitor used to treat excessive fear memory that directly inhibits GluN2B-NMDARs, normalizes NMDAR function and contextual fear memory consolidation in Lrfn3−/− mice, although the GluN2B-specific NMDAR antagonist ifenprodil was not sufficient to reverse the enhanced fear memory consolidation. These results suggest that SALM4 suppresses excessive GluN2B-NMDAR (not AMPAR) function and fear memory consolidation (not acquisition).


2021 ◽  
Author(s):  
Lauren Jane Walker ◽  
Rebecca A Roque ◽  
Maria F Navarro ◽  
Michael Granato

The receptor tyrosine kinase MuSK, its co-receptor Lrp4 and the Agrin ligand constitute a signaling pathway critical in axial muscle for neuromuscular synapse development, yet whether this pathway functions similarly in appendicular muscle is unclear. Here, using the larval zebrafish pectoral fin, equivalent to tetrapod forelimbs, we show that like axial muscle, developing appendicular muscles develop aneural acetylcholine receptor (AChR) clusters prior to innervation. As motor axons arrive, neural AChR clusters form, eventually leading to functional synapses in a MuSK-dependent manner. Surprisingly, we find that loss of Agrin or Lrp4 function, which abolishes synaptic AChR clusters in axial muscle, results in enlarged presynaptic nerve endings and progressively expanding appendicular AChR clusters, mimicking the consequences of motoneuron ablation. Moreover, musk depletion in lrp4 mutants partially restores synaptic AChR patterning. Combined, our results provide compelling evidence that, in contrast to axial muscle in which Agrin/Lrp4 stimulates MuSK activity, Agrin/Lrp4 signaling in appendicular muscle constrains MuSK activity to organize neuromuscular synapses. Thus, we reveal a previously unappreciated role for Agrin/Lrp4 signaling, thereby highlighting distinct differences between axial and appendicular synapse development.


2021 ◽  
Author(s):  
Andrea Toledo ◽  
Giorgia Bimbi ◽  
Mathieu Letellier ◽  
Beatrice Tessier ◽  
Sophie Daburon ◽  
...  

MDGAs are molecules that can bind neuroligins in cis and interfere with trans-synaptic neurexin-neuroligin interactions, thereby impairing synapse development. However, the sub-cellular localization and dynamics of MDGAs, as well as their specific mode of action in neurons are still unclear. Here, using both surface immunostaining of endogenous MDGAs and single molecule tracking of recombinant MDGAs in dissociated hippocampal neurons, we show that MDGA1 and MDGA2 molecules are homogeneously distributed and exhibit fast membrane diffusion, with a small reduction in mobility across neuronal maturation in culture Using shRNAs and CRISPR/Cas9 strategies to knock-down/out MDGA1 or MDGA2, we demonstrate an increase in the density of excitatory synapses accompanied by enhanced membrane immobilization and an increase in the phosphotyrosine level of neuroligins associated with excitatory post-synaptic differentiation. Finally, we show that decreasing MDGA expression level reduces the mobility of AMPA receptors and increases the frequency of AMPA receptor mediated mEPSCs. Overall, our results support a mechanism by which interactions between MDGAs and neuroligin-1 delays the assembly of functional excitatory synapses containing AMPA receptors.


2020 ◽  
Vol 12 ◽  
Author(s):  
Seil Jang ◽  
Esther Yang ◽  
Doyoun Kim ◽  
Hyun Kim ◽  
Eunjoon Kim

Synaptic adhesion molecules regulate synapse development through trans-synaptic adhesion and assembly of diverse synaptic proteins. Many synaptic adhesion molecules positively regulate synapse development; some, however, exert negative regulation, although such cases are relatively rare. In addition, synaptic adhesion molecules regulate the amplitude of post-synaptic receptor responses, but whether adhesion molecules can regulate the kinetic properties of post-synaptic receptors remains unclear. Here we report that Clmp, a homophilic adhesion molecule of the Ig domain superfamily that is abundantly expressed in the brain, reaches peak expression at a neonatal stage (week 1) and associates with subunits of AMPA receptors (AMPARs) and kainate receptors (KARs). Clmp deletion in mice increased the frequency and amplitude of AMPAR-mediated miniature excitatory post-synaptic currents (mEPSCs) and the frequency, amplitude, and decay time constant of KAR-mediated mEPSCs in hippocampal CA3 neurons. Clmp deletion had minimal impacts on evoked excitatory synaptic currents at mossy fiber-CA3 synapses but increased extrasynaptic KAR, but not AMPAR, currents, suggesting that Clmp distinctly inhibits AMPAR and KAR responses. Behaviorally, Clmp deletion enhanced novel object recognition and susceptibility to kainate-induced seizures, without affecting contextual or auditory cued fear conditioning or pattern completion-based contextual fear conditioning. These results suggest that Clmp negatively regulates hippocampal excitatory synapse development and AMPAR and KAR responses in the neonatal hippocampal CA3 as well as object recognition and kainate seizure susceptibility in mice.


2020 ◽  
Vol 14 ◽  
Author(s):  
Huimin Zhu ◽  
Xin Qiao ◽  
Wei Liu ◽  
Changyong Wang ◽  
Yuwei Zhao

Sign in / Sign up

Export Citation Format

Share Document