inhibitory plasticity
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 25)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
Vol 17 (11) ◽  
pp. e1009566
Author(s):  
René Larisch ◽  
Lorenz Gönner ◽  
Michael Teichmann ◽  
Fred H. Hamker

Visual stimuli are represented by a highly efficient code in the primary visual cortex, but the development of this code is still unclear. Two distinct factors control coding efficiency: Representational efficiency, which is determined by neuronal tuning diversity, and metabolic efficiency, which is influenced by neuronal gain. How these determinants of coding efficiency are shaped during development, supported by excitatory and inhibitory plasticity, is only partially understood. We investigate a fully plastic spiking network of the primary visual cortex, building on phenomenological plasticity rules. Our results suggest that inhibitory plasticity is key to the emergence of tuning diversity and accurate input encoding. We show that inhibitory feedback (random and specific) increases the metabolic efficiency by implementing a gain control mechanism. Interestingly, this led to the spontaneous emergence of contrast-invariant tuning curves. Our findings highlight that (1) interneuron plasticity is key to the development of tuning diversity and (2) that efficient sensory representations are an emergent property of the resulting network.


2021 ◽  
Vol 17 (11) ◽  
pp. e1009593
Author(s):  
Júlia V. Gallinaro ◽  
Claudia Clopath

Cell assemblies are thought to be the substrate of memory in the brain. Theoretical studies have previously shown that assemblies can be formed in networks with multiple types of plasticity. But how exactly they are formed and how they encode information is yet to be fully understood. One possibility is that memories are stored in silent assemblies. Here we used a computational model to study the formation of silent assemblies in a network of spiking neurons with excitatory and inhibitory plasticity. We found that even though the formed assemblies were silent in terms of mean firing rate, they had an increased coefficient of variation of inter-spike intervals. We also found that this spiking irregularity could be read out with support of short-term plasticity, and that it could contribute to the longevity of memories.


2021 ◽  
Vol 17 (11) ◽  
pp. e1009478
Author(s):  
Filip Vercruysse ◽  
Richard Naud ◽  
Henning Sprekeler

Cortical pyramidal cells (PCs) have a specialized dendritic mechanism for the generation of bursts, suggesting that these events play a special role in cortical information processing. In vivo, bursts occur at a low, but consistent rate. Theory suggests that this network state increases the amount of information they convey. However, because burst activity relies on a threshold mechanism, it is rather sensitive to dendritic input levels. In spiking network models, network states in which bursts occur rarely are therefore typically not robust, but require fine-tuning. Here, we show that this issue can be solved by a homeostatic inhibitory plasticity rule in dendrite-targeting interneurons that is consistent with experimental data. The suggested learning rule can be combined with other forms of inhibitory plasticity to self-organize a network state in which both spikes and bursts occur asynchronously and irregularly at low rate. Finally, we show that this network state creates the network conditions for a recently suggested multiplexed code and thereby indeed increases the amount of information encoded in bursts.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Auguste Schulz ◽  
Christoph Miehl ◽  
Michael J Berry ◽  
Julijana Gjorgjieva

Animals depend on fast and reliable detection of novel stimuli in their environment. Neurons in multiple sensory areas respond more strongly to novel in comparison to familiar stimuli. Yet, it remains unclear which circuit, cellular, and synaptic mechanisms underlie those responses. Here, we show that spike-timing-dependent plasticity of inhibitory-to-excitatory synapses generates novelty responses in a recurrent spiking network model. Inhibitory plasticity increases the inhibition onto excitatory neurons tuned to familiar stimuli, while inhibition for novel stimuli remains low, leading to a network novelty response. The generation of novelty responses does not depend on the periodicity but rather on the distribution of presented stimuli. By including tuning of inhibitory neurons, the network further captures stimulus-specific adaptation. Finally, we suggest that disinhibition can control the amplification of novelty responses. Therefore, inhibitory plasticity provides a flexible, biologically plausible mechanism to detect the novelty of bottom-up stimuli, enabling us to make experimentally testable predictions.


2021 ◽  
Author(s):  
Swati Trisal ◽  
Marcia Maria Aranha ◽  
Ankita Chodankar ◽  
K Vijayraghavan ◽  
Mani Ramaswami

Habituated animals retain a latent capacity for robust engagement with familiar stimuli. In most instances, the ability to override habituation is best explained by postulating: (a) that habituation arises from the potentiation of inhibitory inputs onto stimulus-encoding assemblies; and (b) fast habituation override occurs through disinhibition. Previous work has shown that inhibitory plasticity contributes to specific forms of olfactory and gustatory habituation in Drosophila. Here we analyze how exposure to a novel stimulus causes override of gustatory (proboscis-extension reflex or ″PER″) habituation. While brief sucrose contact with tarsal hairs causes naīve Drosophila to extend their proboscis, persistent tarsal exposure to sucrose reduces PER to subsequent sucrose stimuli. We show that in so habituated animals, either brief exposure of the proboscis to yeast or direct thermogenetic activation of sensory neurons restores the PER response to tarsal sucrose stimulation. Similar override of PER habituation can also be induced by brief thermogenetic activation of a population of TH (Tyrosine-Hydroxylase) positive neurons, a subset of which send projections to the SEZ. Significantly, sensory-neuron induced habituation override requires transmitter release from these TH-positive cells. Treatments that cause override specifically influence the habituated state, with no effect on the naīve sucrose response across a range of concentrations. Taken together, these and other findings are consistent with a model in which novel taste stimuli trigger activity in dopaminergic neurons which, directly or indirectly, inhibit GABAergic cells that drive PER habituation. The implications of these findings for general mechanisms of attentional and sensory override of habituation are discussed.


2021 ◽  
Author(s):  
Loreen Hertäg ◽  
Claudia Clopath

AbstractPredictable sensory stimuli do not evoke significant responses in a subset of cortical excitatory neurons. Some of those neurons, however, change their activity upon mismatches between actual and predicted stimuli. Different variants of these prediction-error neurons exist and they differ in their responses to unexpected sensory stimuli. However, it is unclear how these variants can develop and co-exist in the same recurrent network, and how they are simultaneously shaped by the astonishing diversity of inhibitory interneurons. Here, we study these questions in a computational network model with three types of inhibitory interneurons. We find that balancing excitation and inhibition in multiple pathways gives rise to heterogeneous prediction-error circuits. Dependent on the network’s initial connectivity and distribution of actual and predicted sensory inputs, these circuits can form different variants of prediction-error neurons that are robust to network perturbations and generalize to stimuli not seen during learning. These variants can be learned simultaneously via homeostatic inhibitory plasticity with low baseline firing rates. Finally, we demonstrate that prediction-error neurons can support biased perception, we illustrate a number of functional implications, and we discuss testable predictions.


2021 ◽  
Author(s):  
Norman Seeliger ◽  
Jochen Triesch

Treatments for amblyopia focus on vision therapy and patching of one eye. Predicting the success of these methods remains difficult, however. Recent research has used binocular rivalry to monitor visual cortical plasticity during occlusion therapy, leading to a successful prediction of the recovery rate of the amblyopic eye. The underlying mechanisms and their relation to neural homeostatic plasticity are not known. Here we propose a spiking neural network to explain the effect of shortterm monocular deprivation on binocular rivalry. The model reproduces perceptual switches as observed experimentally. When one eye is occluded, inhibitory plasticity changes the balance between the eyes and leads to longer dominance periods for the eye that has been deprived. The model suggests that homeostatic inhibitory plasticity is a critical component of the observed effects and might play an important role in the recovery from amblyopia.


2021 ◽  
Author(s):  
Julia V Gallinaro ◽  
Claudia Clopath

Cell assemblies are thought to be the substrate of memory in the brain. Theoretical studies have previously shown that assemblies can be formed in networks with multiple types of plasticity. But how exactly they are formed and how they encode information is yet to be fully understood. One possibility is that memories are stored in silent assemblies. Here we used a computational model to study the formation of silent assemblies in a network of spiking neurons with excitatory and inhibitory plasticity. We found that even though the formed assemblies were silent in terms of mean firing rate, they had an increased coefficient of variation of inter-spike intervals. We also found that this spiking irregularity could be readout with support of short-term plasticity, and that it could contribute to the longevity of memories.


2021 ◽  
pp. JN-RM-1207-20
Author(s):  
Ting Feng ◽  
Christian Alicea ◽  
Vincent Pham ◽  
Amanda Kirk ◽  
Simon Pieraut

Sign in / Sign up

Export Citation Format

Share Document