Age-related post-error slowing and stimulus repetition effect in motor inhibition during a stop-signal task

Author(s):  
Howard Muchen Hsu ◽  
Shulan Hsieh
Author(s):  
Martina Montalti ◽  
Marta Calbi ◽  
Valentina Cuccio ◽  
Maria Alessandra Umiltà ◽  
Vittorio Gallese

AbstractIn the last decades, the embodied approach to cognition and language gained momentum in the scientific debate, leading to evidence in different aspects of language processing. However, while the bodily grounding of concrete concepts seems to be relatively not controversial, abstract aspects, like the negation logical operator, are still today one of the main challenges for this research paradigm. In this framework, the present study has a twofold aim: (1) to assess whether mechanisms for motor inhibition underpin the processing of sentential negation, thus, providing evidence for a bodily grounding of this logic operator, (2) to determine whether the Stop-Signal Task, which has been used to investigate motor inhibition, could represent a good tool to explore this issue. Twenty-three participants were recruited in this experiment. Ten hand-action-related sentences, both in affirmative and negative polarity, were presented on a screen. Participants were instructed to respond as quickly and accurately as possible to the direction of the Go Stimulus (an arrow) and to withhold their response when they heard a sound following the arrow. This paradigm allows estimating the Stop Signal Reaction Time (SSRT), a covert reaction time underlying the inhibitory process. Our results show that the SSRT measured after reading negative sentences are longer than after reading affirmative ones, highlighting the recruitment of inhibitory mechanisms while processing negative sentences. Furthermore, our methodological considerations suggest that the Stop-Signal Task is a good paradigm to assess motor inhibition’s role in the processing of sentence negation.


2020 ◽  
Vol 10 (12) ◽  
pp. 1013
Author(s):  
Sien Hu ◽  
Chiang-shan R. Li

Aging is associated with structural and functional changes in the hippocampus, and hippocampal dysfunction represents a risk marker of Alzheimer’s disease. Previously, we demonstrated age-related changes in reactive and proactive control in the stop signal task, each quantified by the stop signal reaction time (SSRT) and sequential effect computed as the correlation between the estimated stop signal probability and go trial reaction time. Age was positively correlated with the SSRT, but not with the sequential effect. Here, we explored hippocampal gray matter volume (GMV) and activation to response inhibition and to p(Stop) in healthy adults 18 to 72 years of age. The results showed age-related reduction of right anterior hippocampal activation during stop success vs. go trials, and the hippocampal activities correlated negatively with the SSRT. In contrast, the right posterior hippocampus showed higher age-related responses to p(Stop), but the activities did not correlate with the sequential effect. Further, we observed diminished GMVs of the anterior and posterior hippocampus. However, the GMVs were not related to behavioral performance or regional activities. Together, these findings suggest that hippocampal GMVs and regional activities represent distinct neural markers of cognitive aging, and distinguish the roles of the anterior and posterior hippocampus in age-related changes in cognitive control.


2021 ◽  
Vol 11 (4) ◽  
pp. 478
Author(s):  
Trung Van Nguyen ◽  
Prasad Balachandran ◽  
Neil G. Muggleton ◽  
Wei-Kuang Liang ◽  
Chi-Hung Juan

Response inhibition has been widely explored using the stop signal paradigm in the laboratory setting. However, the mechanism that demarcates attentional capture from the motor inhibition process is still unclear. Error monitoring is also involved in the stop signal task. Error responses that do not complete, i.e., partial errors, may require different error monitoring mechanisms relative to an overt error. Thus, in this study, we included a “continue go” (Cont_Go) condition to the stop signal task to investigate the inhibitory control process. To establish the finer difference in error processing (partial vs. full unsuccessful stop (USST)), a grip-force device was used in tandem with electroencephalographic (EEG), and the time-frequency characteristics were computed with Hilbert–Huang transform (HHT). Relative to Cont_Go, HHT results reveal (1) an increased beta and low gamma power for successful stop trials, indicating an electrophysiological index of inhibitory control, (2) an enhanced theta and alpha power for full USST trials that may mirror error processing. Additionally, the higher theta and alpha power observed in partial over full USST trials around 100 ms before the response onset, indicating the early detection of error and the corresponding correction process. Together, this study extends our understanding of the finer motor inhibition control and its dynamic electrophysiological mechanisms.


2013 ◽  
Vol 23 ◽  
pp. S279
Author(s):  
M. Spies ◽  
G.S. Kranz ◽  
S. Ganger ◽  
R. Sladky ◽  
M. Küblböck ◽  
...  

2009 ◽  
Vol 40 (2) ◽  
pp. 263-272 ◽  
Author(s):  
S. Morein-Zamir ◽  
N. A. Fineberg ◽  
T. W. Robbins ◽  
B. J. Sahakian

BackgroundObsessive-compulsive disorder (OCD) has been associated with impairments in stop-signal inhibition, a measure of motor response suppression. The study used a novel paradigm to examine both thought suppression and response inhibition in OCD, where the modulatory effects of stimuli relevant to OCD could also be assessed. Additionally, the study compared inhibitory impairments in OCD patients with and without co-morbid depression, as depression is the major co-morbidity of OCD.MethodVolitional response suppression and unintentional thought suppression to emotive and neutral stimuli were examined using a novel thought stop-signal task. The thought stop-signal task was administered to non-depressed OCD patients, depressed OCD patients and healthy controls (n=20 per group).ResultsMotor inhibition impairments were evident in OCD patients, while motor response performance did not differ between patients and controls. Switching to a new response but not motor inhibition was affected by stimulus relevance in OCD patients. Additionally, unintentional thought suppression as measured by repetition priming was intact. OCD patients with and without depression did not differ on any task performance measures, though there were significant differences in all self-reported measures.ConclusionsResults support motor inhibition deficits in OCD that remain stable regardless of stimulus meaning or co-morbid depression. Only switching to a new response was influenced by stimulus meaning. When response inhibition was successful in OCD patients, so was the unintentional suppression of the accompanying thought.


2021 ◽  
Author(s):  
Joshua Tatz ◽  
Cheol Soh ◽  
Jan R Wessel

The ability to stop an already initiated action is paramount to adaptive behavior. Most scientific debate in the field of human action-stopping currently focuses on two interrelated questions. First: Which mental and neural processes underpin the implementation of inhibitory control, and which reflect the attentional detection of salient stop-signals instead? Second: Why do physiological signatures of inhibition occur at two different latencies after stop-signals (for visual signals, either before or after ~150ms)? Here, we address both questions via two pre-registered experiments that combined transcranial magnetic stimulation, electromyography, and multi-variate pattern analysis of whole-scalp electroencephalography. Using a stop-signal task that also contained a second type of salient signal that did not require stopping, we found that both signals induced equal amounts of early-latency inhibitory activity, whereas only later signatures (after 175ms) distinguished the two. These findings resolve ongoing debates in the literature and strongly suggest a two-step model of action-stopping.


2020 ◽  
Vol 32 (4) ◽  
pp. 590-602 ◽  
Author(s):  
Tobin Dykstra ◽  
Darcy A. Waller ◽  
Eliot Hazeltine ◽  
Jan R. Wessel

The stop signal task (SST) is the gold standard experimental model of inhibitory control. However, neither SST condition–contrast (stop vs. go, successful vs. failed stop) purely operationalizes inhibition. Because stop trials include a second, infrequent signal, the stop versus go contrast confounds inhibition with attentional and stimulus processing demands. While this confound is controlled for in the successful versus failed stop contrast, the go process is systematically faster on failed stop trials, contaminating the contrast with a different noninhibitory confound. Here, we present an SST variant to address both confounds and evaluate putative neural indices of inhibition with these influences removed. In our variant, stop signals occurred on every trial, equating the noninhibitory demands of the stop versus go contrast. To entice participants to respond despite the impending stop signals, responses produced before stop signals were rewarded. This also reversed the go process bias that typically affects the successful versus failed stop contrast. We recorded scalp electroencephalography in this new version of the task (as well as a standard version of the SST with infrequent stop signal) and found that, even under these conditions, the properties of the frontocentral stop signal P3 ERP remained consistent with the race model. Specifically, in both tasks, the amplitude of the P3 was increased on stop versus go trials. Moreover, the onset of this P3 occurred earlier for successful compared with failed stop trials in both tasks, consistent with the proposal of the race model that an earlier start of the inhibition process will increase stopping success. Therefore, the frontocentral stop signal P3 represents a neural process whose properties are in line with the predictions of the race model of motor inhibition, even when the SST's confounds are controlled.


2020 ◽  
Vol 1 ◽  
Author(s):  
Satish Jaiswal ◽  
Shao-Yang Tsai ◽  
Chi-Hung Juan ◽  
Wei-Kuang Liang ◽  
Neil G. Muggleton

AbstractInhibitory control can be divided into motor and cognitive inhibition. The current research is the first study exploring the impact of brief mindfulness training on motor inhibition, measured by a stop signal task in participants without any meditation experience. Motor inhibition performance was compared before and immediately after three different conditions; a brief mindfulness induction, a resting state and an active control session in which participants listened to their favorite music. Post-test learning effect on go-reaction times was seen for the resting and mindfulness conditions, but was absent in the music session, possibly due to emotional arousal might have led slower responses. Brief mindfulness training did not significantly alter inhibitory control, although marginal improvement in stop signal reaction time following the mindfulness induction was observed. Motor inhibition appears unresponsive to either short-term or long-term mindfulness practice. Future mindfulness studies should explore a broad spectrum of cognitive functions and populations.


Sign in / Sign up

Export Citation Format

Share Document