Predictive coding for motion stimuli in human early visual cortex

2014 ◽  
Vol 221 (2) ◽  
pp. 879-890 ◽  
Author(s):  
Wouter Schellekens ◽  
Richard J. A. van Wezel ◽  
Natalia Petridou ◽  
Nick F. Ramsey ◽  
Mathijs Raemaekers
2015 ◽  
Vol 15 (12) ◽  
pp. 720 ◽  
Author(s):  
Lars Muckli ◽  
Luca Vizioli ◽  
Lucy Petro ◽  
Federico De Martino ◽  
Petra Vetter

2015 ◽  
Vol 113 (9) ◽  
pp. 3159-3171 ◽  
Author(s):  
Caroline D. B. Luft ◽  
Alan Meeson ◽  
Andrew E. Welchman ◽  
Zoe Kourtzi

Learning the structure of the environment is critical for interpreting the current scene and predicting upcoming events. However, the brain mechanisms that support our ability to translate knowledge about scene statistics to sensory predictions remain largely unknown. Here we provide evidence that learning of temporal regularities shapes representations in early visual cortex that relate to our ability to predict sensory events. We tested the participants' ability to predict the orientation of a test stimulus after exposure to sequences of leftward- or rightward-oriented gratings. Using fMRI decoding, we identified brain patterns related to the observers' visual predictions rather than stimulus-driven activity. Decoding of predicted orientations following structured sequences was enhanced after training, while decoding of cued orientations following exposure to random sequences did not change. These predictive representations appear to be driven by the same large-scale neural populations that encode actual stimulus orientation and to be specific to the learned sequence structure. Thus our findings provide evidence that learning temporal structures supports our ability to predict future events by reactivating selective sensory representations as early as in primary visual cortex.


2014 ◽  
Vol 34 (22) ◽  
pp. 7493-7500 ◽  
Author(s):  
S. E. Bosch ◽  
J. F. M. Jehee ◽  
G. Fernandez ◽  
C. F. Doeller

Neuroreport ◽  
1999 ◽  
Vol 10 (12) ◽  
pp. 2631-2634 ◽  
Author(s):  
Erik Corthout ◽  
Bob Uttl ◽  
Vincent Walsh ◽  
Mark Hallett ◽  
Alan Cowey

2015 ◽  
Vol 27 (11) ◽  
pp. 2117-2125 ◽  
Author(s):  
Reshanne R. Reeder ◽  
Francesca Perini ◽  
Marius V. Peelen

Theories of visual selective attention propose that top–down preparatory attention signals mediate the selection of task-relevant information in cluttered scenes. Neuroimaging and electrophysiology studies have provided correlative evidence for this hypothesis, finding increased activity in target-selective neural populations in visual cortex in the period between a search cue and target onset. In this study, we used online TMS to test whether preparatory neural activity in visual cortex is causally involved in naturalistic object detection. In two experiments, participants detected the presence of object categories (cars, people) in a diverse set of photographs of real-world scenes. TMS was applied over a region in posterior temporal cortex identified by fMRI as carrying category-specific preparatory activity patterns. Results showed that TMS applied over posterior temporal cortex before scene onset (−200 and −100 msec) impaired the detection of object categories in subsequently presented scenes, relative to vertex and early visual cortex stimulation. This effect was specific to category level detection and was related to the type of attentional template participants adopted, with the strongest effects observed in participants adopting category level templates. These results provide evidence for a causal role of preparatory attention in mediating the detection of objects in cluttered daily-life environments.


Sign in / Sign up

Export Citation Format

Share Document