preparatory activity
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 31)

H-INDEX

28
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Kosuke Hamaguchi ◽  
Hiromi Takahashi-Aoki ◽  
Dai Watanabe

Animals must flexibly estimate the value of their actions to successfully adapt in a changing environment. The brain is thought to estimate action-value from two different sources, namely the action-outcome history (retrospective value) and the knowledge of the environment (prospective value). How these two different estimates of action-value are reconciled to make a choice is not well understood. Here we show that as a mouse learns the state-transition structure of a decision-making task, retrospective and prospective values become jointly encoded in the preparatory activity of neurons in the frontal cortex. Suppressing this preparatory activity in expert mice returned their behavior to a naive state. These results reveal the neural circuit that integrates knowledge about the past and future to support predictive decision-making.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shin Yanagihara ◽  
Maki Ikebuchi ◽  
Chihiro Mori ◽  
Ryosuke O. Tachibana ◽  
Kazuo Okanoya

AbstractInitiation and execution of complex learned vocalizations such as human speech and birdsong depend on multiple brain circuits. In songbirds, neurons in the motor cortices and basal ganglia circuitry exhibit preparatory activity before initiation of song, and that activity is thought to play an important role in successful song performance. However, it remains unknown where a start signal for song is represented in the brain and how such a signal would lead to appropriate vocal initiation. To test whether neurons in the midbrain ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) show activity related to song initiation, we carried out extracellular recordings of VTA/SNc single units in singing juvenile male zebra finches. We found that a subset of VTA/SNc units exhibit phasic activity precisely time-locked to the onset of the song bout, and that the activity occurred specifically at the beginning of song. These findings suggest that phasic activity in the VTA/SNc represents a start signal that triggers song vocalization.


2021 ◽  
Author(s):  
Surya Gayet ◽  
Marius V. Peelen

Humans are remarkably proficient at finding objects within a complex visual world. Current theories of attentional selection propose that this ability is mediated by target-specific preparatory activity in visual cortex, biasing visual processing in favor of the target object. In real-world situations, however, the retinal image that any object will produce is unknown in advance; its size, for instance, varies dramatically with the object's distance from the observer. Using fMRI, we show that preparatory activity is systematically modulated by expectations derived from scene context. Human participants searched for objects at different distances in scenes. Activity patterns in object-selective cortex during search preparation (while no objects were presented), resembled activity patterns evoked by viewing targets object in isolation. Crucially, this preparatory activity was modulated by distance, reflecting the predicted retinal image of the object at each distance. These findings reconcile current theories of attentional selection with the challenges of real-world vision.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuki Maruyama ◽  
Masaki Fukunaga ◽  
Sho K. Sugawara ◽  
Yuki H. Hamano ◽  
Tetsuya Yamamoto ◽  
...  

AbstractThe primary motor cortex (M1) is crucial for motor learning; however, its interaction with other brain areas during motor learning remains unclear. We hypothesized that the fronto-parietal execution network (FPN) provides learning-related information critical for the flexible cognitive control that is required for practice. We assessed network-level changes during sequential finger tapping learning under speed pressure by combining magnetic resonance spectroscopy and task and resting-state functional magnetic resonance imaging. There was a motor learning-related increase in preparatory activity in the fronto-parietal regions, including the right M1, overlapping the FPN and sensorimotor network (SMN). Learning-related increases in M1-seeded functional connectivity with the FPN, but not the SMN, were associated with decreased GABA/glutamate ratio in the M1, which were more prominent in the parietal than the frontal region. A decrease in the GABA/glutamate ratio in the right M1 was positively correlated with improvements in task performance (p = 0.042). Our findings indicate that motor learning driven by cognitive control is associated with local variations in the GABA/glutamate ratio in the M1 that reflects remote connectivity with the FPN, representing network-level motor sequence learning formations.


Author(s):  
Ewa Wiwatowska ◽  
Dominik Czajeczny ◽  
Jarosław M. Michałowski

AbstractProcrastination is a voluntary delay in completing an important task while being aware that this behavior may lead to negative outcomes. It has been shown that an increased tendency to procrastinate is associated with deficits in some aspects of cognitive control. However, none of the previous studies investigated these dysfunctions through the lenses of the Dual Mechanisms Framework, which differentiates proactive and reactive modes of control. The present study was designed to fill this gap, using behavioral and neurophysiological assessment during the completion of the AX-Continuous Performance Task (AX-CPT) by high (HP) and low (LP) procrastinating students (N = 139). Behavioral results indicated that HP (vs. LP) were characterized by increased attentional fluctuations (higher reaction time variability) and reduction in some indices of proactive cognitive control (lower d’-context and A-cue bias, but similar PBIs). Furthermore, the neurophysiological data showed that HP, compared with LP, allocated less attentional resources (lower P3b) to cues that help to predict the correct responses to upcoming probes. They also responded with reduced preparatory activity (smaller CNV) after cues presentation. The two groups did not differ in neural responses linked to conflict detection and inhibition (similar N2 and P3a). Obtained findings indicate that HP might present deficits in some cognitive functions that are essential for effective proactive control engagement, along with preserved levels of reactive cognitive control. In the present paper, we discuss the potential neural and cognitive mechanisms responsible for the observed effects.


2021 ◽  
Vol 13 (9) ◽  
pp. 4303-4312
Author(s):  
Luca Palchetti ◽  
Marco Barucci ◽  
Claudio Belotti ◽  
Giovanni Bianchini ◽  
Bertrand Cluzet ◽  
...  

Abstract. Measurements of the spectrum of the atmospheric emission in the far-infrared (FIR) range, between 100 and 667 cm−1 (100–15 µm) are scarce because of the detection complexity and of the strong absorption of air at ground level preventing the sounding of the FIR from low altitude. Consequently, FIR measurements need to be made from high-altitude sites or on board airborne platforms or satellites. This paper describes the dataset of FIR spectral radiances of the atmosphere and snow surface emission measured in the 100–1000 cm−1 range by the Far-Infrared Radiation Mobile Observation System (FIRMOS) instrument during a 2-month campaign carried out from the ground at about 3000 m of altitude on the top of Mt. Zugspitze in the German Alps in 2018–2019. This campaign is part of the preparatory activity of a new space FIR mission, named Far-infrared Outgoing Radiation Understanding and Monitoring (FORUM), which is under development by the European Space Agency (ESA). The dataset acquired during the campaign also includes all the additional measurements needed to provide a full characterisation of the observed atmospheric state and the local atmospheric and surface conditions. It includes co-located spectral measurements in the infrared range from 400 to 1800 cm−1; lidar backscatter profiles; radio soundings of temperature, humidity and aerosol backscatter profiles; local weather parameters; and snow/ice microphysical properties. These measurements provide a unique dataset that can be used to perform radiative closure experiments to improve modelling parameters in the FIR that are not well-characterised, such as water vapour spectroscopy, scattering properties of cirrus clouds, and the FIR emissivity of the surface covered by snow. The consolidated dataset is freely available via the ESA campaign dataset website at https://doi.org/10.5270/ESA-38034ee (Palchetti et al., 2020a).


2021 ◽  
Author(s):  
John Patrick Grogan ◽  
Matthias Raemaekers ◽  
Maaike M H van Swieten ◽  
Alexander L. Green ◽  
Martin J. Gillies ◽  
...  

Motivation depends on dopamine, but might be modulated by acetylcholine which influences dopamine release in the striatum, and amplifies motivation in animal studies. A corresponding effect in humans would be important clinically, since anticholinergic drugs are frequently used in Parkinson's disease, a condition that can also disrupt motivation. Reward and dopamine make us more ready to respond, as indexed by reaction times (RT), and move faster, sometimes termed vigour. These effects may be controlled by preparatory processes that can be tracked using EEG. We measured vigour in a placebo-controlled, double-blinded study of trihexyphenidyl (THP), a muscarinic antagonist, with an incentivised eye movement task and EEG. Participants responded faster and with greater vigour when incentives were high, but THP blunted these motivation effects, suggesting that muscarinic receptors facilitate invigoration by reward. Preparatory EEG build-up (contingent negative variation; CNV) was strengthened by high incentives and by muscarinic blockade. The amplitude of preparatory activity predicted both vigour and RT, although over distinct scalp regions. Frontal activity predicted vigour, whereas a larger, earlier, central component predicted RT. Indeed the incentivisation of RT was partly mediated by the CNV, though vigour was not. Moreover, the CNV mediated the drug's effect on dampening incentives, suggesting that muscarinic receptors underlie the motivational influence on this preparatory activity. Taken together, these findings show that a muscarinic blocker used to treat Parkinson's disease impairs motivated action in healthy people, and that medial frontal preparatory neural activity mediates this for RT.


2021 ◽  
Author(s):  
Chunlei Zhang ◽  
Fani Koukouli ◽  
Manuela Allegra ◽  
Cantin Ortiz ◽  
Hsin-Lun Kao ◽  
...  

Preparatory activity in the frontal cortex preceding movement onset is thought to represent a neuronal signature of motor planning. However, how excitatory and inhibitory synaptic inputs to frontal neurons are integrated during movement preparation remains unclear. Here we address this question by performing in vivo whole-cell patch-clamp recordings in the secondary motor cortex (MOs) of head-fixed mice moving on a treadmill. We find that both superficial and deep principal neurons show slowly increasing (~10 s) membrane potential and spike rate ramps preceding the onset of spontaneous, self-paced running periods. By contrast, in animals trained to perform a goal-directed task, both membrane potential and spike ramps are characterized by larger amplitudes and accelerated kinetics during preparation of goal-driven movement. To determine the role of local inhibitory neurons in shaping these task-dependent preparatory signals, we chemogenetically suppressed the activity of specific interneuron subpopulations in untrained animals. Inactivation of parvalbumin-positive (PV+) interneurons leads to depolarized membrane potential ramps with increased amplitudes during preparation of movement, while inactivation of somatostatin-positive (SOM+) interneurons abolishes membrane potential ramps. A computational model of the local MOs circuit shows that SOM+-mediated inhibition of PV+ interneurons in conjunction with recurrent connectivity among the principal neurons can reproduce slow ramping signals, while plasticity of excitatory synapses on SOM+ interneurons can explain the acceleration of these signals in trained animals. Together, our data reveal that local inhibitory neurons play distinct roles in controlling task-dependent preparatory ramping signals when MOs neurons integrate external inputs during motor planning.


2021 ◽  
pp. 113379
Author(s):  
Michihiro Osumi ◽  
Masahiko Sumitani ◽  
Yuki Nishi ◽  
Satoshi Nobusako ◽  
Burcu Dilek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document