scholarly journals Radial glia fibers translate Fgf8 morphogenetic signals to generate a thalamic nuclear complex protomap in the mantle layer

2018 ◽  
Vol 224 (2) ◽  
pp. 661-679 ◽  
Author(s):  
Arancha Botella-López ◽  
Raquel Garcia-Lopez ◽  
Ana Pombero ◽  
Salvador Martinez
2020 ◽  
Vol 8 (2) ◽  
pp. 8 ◽  
Author(s):  
Rachel Moore ◽  
Paula Alexandre

Maintenance of the neural progenitor pool during embryonic development is essential to promote growth of the central nervous system (CNS). The CNS is initially formed by tightly compacted proliferative neuroepithelial cells that later acquire radial glial characteristics and continue to divide at the ventricular (apical) and pial (basal) surface of the neuroepithelium to generate neurons. While neural progenitors such as neuroepithelial cells and apical radial glia form strong connections with their neighbours at the apical and basal surfaces of the neuroepithelium, neurons usually form the mantle layer at the basal surface. This review will discuss the existing evidence that supports a role for neurons, from early stages of differentiation, in promoting progenitor cell fates in the vertebrates CNS, maintaining tissue homeostasis and regulating spatiotemporal patterning of neuronal differentiation through Delta-Notch signalling.


Author(s):  
V. Kriho ◽  
H.-Y. Yang ◽  
C.-M. Lue ◽  
N. Lieska ◽  
G. D. Pappas

Radial glia have been classically defined as those early glial cells that radially span their thin processes from the ventricular to the pial surfaces in the developing central nervous system. These radial glia constitute a transient cell population, disappearing, for the most part, by the end of the period of neuronal migration. Traditionally, it has been difficult to definitively identify these cells because the principal criteria available were morphologic only.Using immunofluorescence microscopy, we have previously defined a phenotype for radial glia in rat spinal cord based upon the sequential expression of vimentin, glial fibrillary acidic protein and an intermediate filament-associated protein, IFAP-70/280kD. We report here the application of another intermediate filament-associated protein, IFAP-300kD, originally identified in BHK-21 cells, to the immunofluorescence study of radial glia in the developing rat spinal cord.Results showed that IFAP-300kD appeared very early in rat spinal cord development. In fact by embryonic day 13, IFAP-300kD immunoreactivity was already at its peak and was observed in most of the radial glia which span the spinal cord from the ventricular to the subpial surfaces (Fig. 1). Interestingly, from this time, IFAP-300kD immunoreactivity diminished rapidly in a dorsal to ventral manner, so that by embryonic day 16 it was detectable only in the maturing macroglial cells in the marginal zone of the spinal cord and the dorsal median septum (Fig. 2). By birth, the spinal cord was essentially immuno-negative for this IFAP. Thus, IFAP-300kD appears to be another differentiation marker available for future studies of gliogenesis, especially for the early stages of radial glia differentiation.


2005 ◽  
Vol 32 (S 4) ◽  
Author(s):  
A Kunze ◽  
S Grass ◽  
O.W Witte ◽  
G Kempermann ◽  
C Redecker

Author(s):  
Eva B. Krammer ◽  
Martin F. Lischka ◽  
Thomas P. Egger ◽  
Maria Riedl ◽  
Helmut Gruber

Sign in / Sign up

Export Citation Format

Share Document