TRANSPARENT TESTA 12 genes from Brassica napus and parental species: cloning, evolution, and differential involvement in yellow seed trait

2008 ◽  
Vol 281 (1) ◽  
pp. 109-123 ◽  
Author(s):  
You-Rong Chai ◽  
Bo Lei ◽  
Hua-Lei Huang ◽  
Jia-Na Li ◽  
Jia-Ming Yin ◽  
...  
Genome ◽  
2007 ◽  
Vol 50 (9) ◽  
pp. 840-854 ◽  
Author(s):  
Fu-You Fu ◽  
Lie-Zhao Liu ◽  
You-Rong Chai ◽  
Li Chen ◽  
Tao Yang ◽  
...  

Yellow seed is one of the most important traits of Brassica napus L. Efficient selection of the yellow-seed trait is one of the most important objectives in oilseed rape breeding. Two recombinant inbred line (RIL) populations (RIL-1 and RIL-2) were analyzed for 2 years at 2 locations. Four hundred and twenty SSR, RAPD, and SRAP marker loci covering 1744 cM were mapped in 26 linkage groups of RIL-1, while 265 loci covering 1135 cM were mapped in 20 linkage groups of RIL-2. A total of 19 QTLs were detected in the 2 populations. A major QTL was detected adjacent to the same marker (EM11ME20/200) in both maps in both years. This major QTL could explain 53.71%, 39.34%, 42.42%, 30.18%, 24.86%, and 15.08% of phenotypic variation in 6 combinations (location × year × population). BLASTn analysis of the sequences of the markers flanking the major QTL revealed that the homologous region corresponding to this major QTL was anchored between genes At5g44440 and At5g49640 of Arabidopsis thaliana chromosome 5 (At C5). Based on comparative genomic analysis, the bifunctional gene TT10 is nearest to the homologue of EM11ME20/200 on At C5 and can be considered an important candidate gene for the major QTL identified here. Besides providing an effective strategy for marker-assisted selection of the yellow-seed trait in B. napus, our results also provide important clues for cloning of the candidate gene corresponding to this major QTL.


Genome ◽  
2001 ◽  
Vol 44 (6) ◽  
pp. 1077-1082 ◽  
Author(s):  
Daryl J Somers ◽  
Gerhard Rakow ◽  
Vinod K Prabhu ◽  
Ken RD Friesen

The development of yellow-seeded Brassica napus for improving the canola-meal quality characteristics of lower fibre content and higher protein content has been restricted because no yellow-seeded forms of B. napus exist, and their conventional development requires interspecific introgression of yellow seed coat colour genes from related species. A doubled-haploid (DH) population derived from the F1 generation of the cross 'Apollo' (black-seeded) × YN90-1016 (yellow-seeded) B. napus was analysed via bulked segregant analysis to identify molecular markers associated with the yellow-seed trait in B. napus for future implementation in marker-assisted breeding. A single major gene (pigment 1) flanked by eight RAPD markers was identified co-segregating with the yellow seed coat colour trait in the population. This gene explained over 72% of the phenotypic variation in seed coat colour. Further analysis of the yellow-seeded portion of this DH population revealed two additional genes favouring 'Apollo' alleles, explaining 11 and 8.5%, respectively, of the yellow seed coat colour variation. The data suggested that there is a dominant, epistatic interaction between the pigment 1 locus and the two additional genes. The potential of the markers to be implemented in plant breeding for the yellow-seed trait in B. napus is discussed.Key words: Brassica napus, yellow seed, RAPD.


2020 ◽  
Vol 18 (5) ◽  
pp. 1153-1168 ◽  
Author(s):  
Yungu Zhai ◽  
Kaidi Yu ◽  
Shengli Cai ◽  
Limin Hu ◽  
Olalekan Amoo ◽  
...  

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Shi-Fei Sang ◽  
De-Sheng Mei ◽  
Jia Liu ◽  
Qamar U. Zaman ◽  
Hai-Yan Zhang ◽  
...  

Abstract Background Nsa cytoplasmic male sterility (CMS) is a novel alloplasmic male sterility system derived from somatic hybridization between Brassica napus and Sinapis arvensis. Identification of the CMS-associated gene is a prerequisite for a better understanding of the origin and molecular mechanism of this CMS. With the development of genome sequencing technology, organelle genomes of Nsa CMS line and its maintainer line were sequenced by pyro-sequencing technology, and comparative analysis of the organelle genomes was carried out to characterize the organelle genome composition of Nsa CMS as well as to identify the candidate Nsa CMS-associated genes. Results Nsa CMS mitochondrial genome showed a higher collinearity with that of S. arvensis than B. napus, indicating that Nsa CMS mitochondrial genome was mainly derived from S. arvensis. However, mitochondrial genome recombination of parental lines was clearly detected. In contrast, the chloroplast genome of Nsa CMS was highly collinear with its B. napus parent, without any evidence of recombination of the two parental chloroplast genomes or integration from S. arvensis. There were 16 open reading frames (ORFs) specifically existed in Nsa CMS mitochondrial genome, which could not be identified in the maintainer line. Among them, three ORFs (orf224, orf309, orf346) possessing chimeric and transmembrane structure are most likely to be the candidate CMS genes. Sequences of all three candidate CMS genes in Nsa CMS line were found to be 100% identical with those from S. arvensis mitochondrial genome. Phylogenetic and homologous analysis showed that all the mitochondrial genes were highly conserved during evolution. Conclusions Nsa CMS contains a recombined mitochondrial genome of its two parental species with the majority form S. arvensis. Three candidate Nsa CMS genes were identified and proven to be derived from S. arvensis other than recombination of its two parental species. Further functional study of the candidate genes will help to identify the gene responsible for the CMS and the underlying molecular mechanism.


2005 ◽  
Vol 124 (1) ◽  
pp. 9-12 ◽  
Author(s):  
X. P. Liu ◽  
J. X. Tu ◽  
B. Y. Chen ◽  
T. D. Fu

2006 ◽  
Vol 34 (2) ◽  
pp. 105-120 ◽  
Author(s):  
Yun-Liang Wei ◽  
Jia-Na Li ◽  
Jun Lu ◽  
Zhang-Lin Tang ◽  
Dong-Chun Pu ◽  
...  

Euphytica ◽  
2006 ◽  
Vol 149 (3) ◽  
pp. 381-385 ◽  
Author(s):  
Zhiwen Liu ◽  
Tingdong Fu ◽  
Ying Wang ◽  
Jinxing Tu ◽  
Baoyuan Chen ◽  
...  

Genome ◽  
1999 ◽  
Vol 42 (3) ◽  
pp. 387-402 ◽  
Author(s):  
Dominique Brunel ◽  
Nicole Froger ◽  
Georges Pelletier

A method for the development of consensus genetic markers between species of the same taxonomic family is described in this paper. It is based on the conservation of the peptide sequences and on the potential polymorphism within non-coding sequences. Six loci sequenced from Arabidopsis thaliana, AG, LFY3, AP3, FAD7, FAD3, and ADH, were analysed for one ecotype of A. thaliana, four lines of Brassica napus, and one line for each parental species, Brassica oleracea and Brassica rapa. Positive amplifications with the degenerate primers showed one band for A. thaliana, two to four bands in rapeseed, and one to two bands in the parental species. Direct sequencing of the PCR products confirms their peptide similarity with the "mother" sequence. By comparison of intron sequences, the correspondence between each rapeseed gene and its homologue in one of the parental species can be determined without ambiguity. Another important result is the presence of a polymorphism inside these fragments between the rapeseed lines. This variability could generally be detected by differences of electrophoretic migration on long non-denaturing polyacrylamide gels. This method enables a quick and easy shuttle between A. thaliana and Brassica species without cloning.Key words: consensus genetics markers, PCR specific, Brassica, Arabidopsis, targeted markers, DSCP.


Sign in / Sign up

Export Citation Format

Share Document