Vagus nerve stimulation preferentially induces Fos expression in nitrergic neurons of rat esophagus

2006 ◽  
Vol 324 (3) ◽  
pp. 361-367 ◽  
Author(s):  
Hirofumi Kuramoto ◽  
Makoto Kadowaki
2021 ◽  
Vol 15 ◽  
Author(s):  
Jackson Brougher ◽  
Umaymah Aziz ◽  
Nikitha Adari ◽  
Muskaan Chaturvedi ◽  
Aryela Jules ◽  
...  

Background: Left cervical vagus nerve stimulation (l-VNS) is an FDA-approved treatment for neurological disorders including epilepsy, major depressive disorder, and stroke, and l-VNS is increasingly under investigation for a range of other neurological indications. Traditional l-VNS is thought to induce therapeutic neuroplasticity in part through the coordinated activation of multiple broadly projecting neuromodulatory systems in the brain. Recently, it has been reported that striking lateralization exists in the anatomical and functional connectivity between the vagus nerves and the dopaminergic midbrain. These emerging findings suggest that VNS-driven activation of this important plasticity-promoting neuromodulatory system may be preferentially driven by targeting the right, rather than the left, cervical nerve.Objective: To compare the effects of right cervical VNS (r-VNS) vs. traditional l-VNS on self-administration behavior and midbrain dopaminergic activation in rats.Methods: Rats were implanted with a stimulating cuff electrode targeting either the right or left cervical vagus nerve. After surgical recovery, rats underwent a VNS self-administration assay in which lever pressing was paired with r-VNS or l-VNS delivery. Self-administration was followed by extinction, cue-only reinstatement, and stimulation reinstatement sessions. Rats were sacrificed 90 min after completion of behavioral training, and brains were removed for immunohistochemical analysis of c-Fos expression in the dopaminergic ventral tegmental area (VTA) and substantia nigra pars compacta (SNc), as well as in the noradrenergic locus coeruleus (LC).Results: Rats in the r-VNS cohort performed significantly more lever presses throughout self-administration and reinstatement sessions than did rats in the l-VNS cohort. Moreover, this appetitive behavioral responding was associated with significantly greater c-Fos expression among neuronal populations within the VTA, SNc, and LC. Differential c-Fos expression following r-VNS vs. l-VNS was particularly prominent within dopaminergic midbrain neurons.Conclusion: Our results support the existence of strong lateralization within vagal-mesencephalic signaling pathways, and suggest that VNS targeted to the right, rather than left, cervical nerve preferentially activates the midbrain dopaminergic system. These findings raise the possibility that r-VNS could provide a promising strategy for enhancing dopamine-dependent neuroplasticity, opening broad avenues for future research into the efficacy and safety of r-VNS in the treatment of neurological disease.


2019 ◽  
Vol 28 (4) ◽  
pp. 1381-1387
Author(s):  
Ying Yuan ◽  
Jie Wang ◽  
Dongyu Wu ◽  
Dahua Zhang ◽  
Weiqun Song

Purpose Severe dysphagia with weak pharyngeal peristalsis after dorsal lateral medullary infarction (LMI) requires long-term tube feeding. However, no study is currently available on therapeutic effectiveness in severe dysphagia caused by nuclear damage of vagus nerve after dorsal LMI. The purpose of the present investigation was to explore the potential of transcutaneous vagus nerve stimulation (tVNS) to improve severe dysphagia with weak pharyngeal peristalsis after dorsal LMI. Method We assessed the efficacy of 6-week tVNS in a 28-year-old woman presented with persisting severe dysphagia after dorsal LMI who had been on nasogastric feeding for 6 months. tVNS was applied for 20 min twice a day, 5 days a week, for 6 weeks. The outcome measures included saliva spitted, Swallow Function Scoring System, Functional Oral Intake Scale, Clinical Assessment of Dysphagia With Wallenberg Syndrome, Yale Pharyngeal Residue Severity Rating Scale, and upper esophagus X-ray examination. Results After tVNS, the patient was advanced to a full oral diet without head rotation or spitting. No saliva residue was found in the valleculae and pyriform sinuses. Contrast medium freely passed through the upper esophageal sphincter. Conclusion Our findings suggest that tVNS might provide a useful means for recovery of severe dysphagia with weak pharyngeal peristalsis after dorsal LMI. Supplemental Material https://doi.org/10.23641/asha.9755438


2021 ◽  
Vol 3 (1) ◽  
pp. e14-e15
Author(s):  
Mark C Genovese ◽  
Yaakov A Levine ◽  
David Chernoff

2018 ◽  
Vol 11 (1) ◽  
pp. 80-85
Author(s):  
Rodrigo Marmo da Costa e Souza ◽  
Felipe Ricardo Pereira Vasconcelos De Arruda ◽  
Jose Anderson Galdino Santos ◽  
Jamerson De Carvalho Andrade ◽  
Suellen Mary Marinho Dos Santos Andrade ◽  
...  

2020 ◽  
Vol 99 (7) ◽  

Introduction: Vagus nerve stimulation is a palliative treatment for patients with refractory epilepsy to reduce the frequency and intensity of seizures. A bipolar helical electrode is placed around the left vagus nerve at the cervical level and is connected to the pulse generator placed in a subcutaneous pocket, most commonly in the subclavian region. Methods: Between March 1998 and October 2019, we performed 196 procedures related to the vagal nerve stimulation at the Neurosurgery Department in Motol University Hospital. Of these, 126 patients were vagal nerve stimulator implantation surgeries for intractable epilepsy. The cases included 69 female and 57 male patients with mean age at the time of the implantation surgery 22±12.4 years (range 2.1−58.4 years). Results: Nine patients (7.1%) were afflicted by complications related to implantation. Surgical complications included postoperative infection in 1.6%, VNS-associated arrhythmias in 1.6%, jugular vein bleeding in 0.8% and vocal cord paresis in 2.4%. One patient with vocal cord palsy also suffered from severe dysphagia. One patient (0.8%) did not tolerate extra stimulation with magnet due to a prolonged spasm in his throat. The extra added benefit of vagus stimulation in one patient was a significant reduction of previously regular severe headaches. Conclusion: Vagus nerve stimulation is an appropriate treatment for patients with drug-resistant epilepsy who are not candidates for focal resective surgery. Implantation of the vagus nerve stimulator is a relatively safe operative procedure.


2013 ◽  
Vol 133 (8) ◽  
pp. 1493-1500 ◽  
Author(s):  
Ryuji Kano ◽  
Kenichi Usami ◽  
Takahiro Noda ◽  
Tomoyo I. Shiramatsu ◽  
Ryohei Kanzaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document