Vesicular glutamate transporter 2-immunoreactive afferent nerve terminals in the carotid body of the rat

2014 ◽  
Vol 358 (1) ◽  
pp. 271-275 ◽  
Author(s):  
Takuya Yokoyama ◽  
Nobuaki Nakamuta ◽  
Tatsumi Kusakabe ◽  
Yoshio Yamamoto
2020 ◽  
Vol 122 (2) ◽  
pp. 151469
Author(s):  
Takuya Yokoyama ◽  
Kazuya Settai ◽  
Nobuaki Nakamuta ◽  
Yoshio Yamamoto

2008 ◽  
Vol 104 (5) ◽  
pp. 1394-1401 ◽  
Author(s):  
David F. Donnelly

The mechanism by which action potentials (APs) are generated in afferent nerve fibers in the carotid body is unknown, but it is generally speculated to be release of an excitatory transmitter and synaptic depolarizing events. However, previous results suggested that Na+ channels in the afferent nerve fibers play an important role in this process. To better understand the potential mechanism by which Na+ channels may generate APs, a mathematical model of chemoreceptor nerve fibers that incorporated Hodgkin-Huxley-type Na+ channels with kinetics of activation and inactivation, as determined previously from recordings of petrosal chemoreceptor neurons, was constructed. While the density of Na+ channels was kept constant, spontaneous APs arose in nerve terminals as the axonal diameter was reduced to that in rat carotid body. AP excitability and pattern were similar to those observed in chemoreceptor recordings: 1) a random pattern at low- and high-frequency discharge rates, 2) a high sensitivity to reductions in extracellular Na+ concentration, and 3) a variation in excitability that increased with AP generation rate. Taken together, the results suggest that an endogenous process in chemoreceptor nerve terminals may underlie AP generation, a process independent of synaptic depolarizing events.


Endocrinology ◽  
2005 ◽  
Vol 146 (1) ◽  
pp. 348-354 ◽  
Author(s):  
Nancy K. Mueller ◽  
Shi Di ◽  
Charles M. Paden ◽  
James P. Herman

Confocal microscopy was used to assess activity-dependent neuroplasticity in neurotransmitter innervation of vasopressin immunoreactive magnocellular neurons in the supraoptic nucleus (SON). Vesicular glutamate transporter 2, glutamic acid decarboxylase, and dopamine β-hydroxylase (DBH) synaptic boutons were visualized in apposition to vasopressin neurons in the SON. A decrease in DBH synaptic boutons per cell was seen upon salt loading, indicating diminished noradrenergic/adrenergic innervation. Loss of DBH appositions to vasopressin neurons was associated with a general loss of DBH immunoreactivity in the SON. In contrast, the number of vesicular glutamate transporter 2 synaptic boutons per neuron increased with salt loading, consistent with increased glutamatergic drive of magnocellular SON neurons. Salt loading also caused an increase in the total number of glutamic acid decarboxylase synaptic boutons on vasopressinergic neurons, suggesting enhanced inhibitory innervation as well. These studies indicate that synaptic plasticity compensates for increased secretory demand and may indeed underlie increased secretion, perhaps via neurotransmitter-specific, activity-related changes in synaptic contacts on vasopressinergic magnocellular neurons in the SON.


Sign in / Sign up

Export Citation Format

Share Document