Early cellular development induced by ecdysteroid in sex-specific wing degeneration of the wingless female winter moth

Author(s):  
Shuhei Niitsu ◽  
Takehiko Kamito
2016 ◽  
Vol 3 (10) ◽  
pp. 160361 ◽  
Author(s):  
Anne l-M-Arnold ◽  
Maren Grüning ◽  
Judy Simon ◽  
Annett-Barbara Reinhardt ◽  
Norbert Lamersdorf ◽  
...  

Climate change may foster pest epidemics in forests, and thereby the fluxes of elements that are indicators of ecosystem functioning. We examined compounds of carbon (C) and nitrogen (N) in insect faeces, leaf litter, throughfall and analysed the soils of deciduous oak forests ( Quercus petraea  L.) that were heavily infested by the leaf herbivores winter moth ( Operophtera brumata  L.) and mottled umber ( Erannis defoliaria  L.). In infested forests, total net canopy-to-soil fluxes of C and N deriving from insect faeces, leaf litter and throughfall were 30- and 18-fold higher compared with uninfested oak forests, with 4333 kg C ha −1 and 319 kg N ha −1 , respectively, during a pest outbreak over 3 years. In infested forests, C and N levels in soil solutions were enhanced and C/N ratios in humus layers were reduced indicating an extended canopy-to-soil element pathway compared with the non-infested forests. In a microcosm incubation experiment, soil treatments with insect faeces showed 16-fold higher fluxes of carbon dioxide and 10-fold higher fluxes of dissolved organic carbon compared with soil treatments without added insect faeces (control). Thus, the deposition of high rates of nitrogen and rapidly decomposable carbon compounds in the course of forest pest epidemics appears to stimulate soil microbial activity (i.e. heterotrophic respiration), and therefore, may represent an important mechanism by which climate change can initiate a carbon cycle feedback.


2013 ◽  
Vol 145 (2) ◽  
pp. 184-192 ◽  
Author(s):  
Tino Schott ◽  
Lauri Kapari ◽  
Snorre B. Hagen ◽  
Ole Petter L. Vindstad ◽  
Jane U. Jepsen ◽  
...  

AbstractOutbreaks of geometrid defoliators in subarctic birch forest in Fennoscandia often occur at high altitude in a distinct zone along the tree line. At the same time, moth larvae may not have an impact on the forest at lower altitude. Directly adjacent outbreak and nonoutbreak areas offer unique opportunities for studying the underlying mechanisms of outbreaks. Within two altitudinal gradients in coastal northern Norway, we investigated whether altitudinal outbreaks might be caused by release from pupal predation by ground-dwelling invertebrates such as harvestmen (Opiliones), spiders (Araneae), rove beetles (Coleoptera: Staphylinidae), carabid beetles (Coleoptera: Carabidae), and other beetles (Coleoptera). We predicted a consistently higher abundance of such generalist predators at low versus high altitudes. Our results did not support this prediction. There was no consistent altitudinal variation in the abundance of predators that could be related to zonal moth outbreaks in the birch forest slopes. In addition, none of the predator groups investigated showed any numerical response to a distinct outbreak of winter moth that took place during the course of the study. Consequently, localised moth outbreaks at the altitudinal tree line in northern Norway cannot be explained by the release from pupal predation by the predator groups examined here.


2002 ◽  
Vol 27 (1) ◽  
Author(s):  
Peter R. Bristow ◽  
Patrick P. Moore
Keyword(s):  

1958 ◽  
Vol 90 (9) ◽  
pp. 538-540 ◽  
Author(s):  
C. C. Smith

The fall cankerworm, Alsophila pometaria (Harr.), and the winter moth, Operophtera brumata (Linn.), both feed to a great extent on the same tree species and prefer apple, Malus spp., red oak, Quercus rubra L., basswood, Tilia spp., white elm, Ulmus americana L., and Norway maple, Acer platanoides L. They also have similar life-histories and habits (Smith 1950 and 1953). Both lay their eggs on the trees in the fall and overwinter in this stage. The eggs hatch about the same time and the larvae of (both species mature about the third week in June. They drop to the ground and form cocoons at a depth of about an inch. The adults emerge about the same time, commencing usually during the last week in October and continuing until early December or until the ground freezes.


2021 ◽  
Vol 22 (5) ◽  
pp. 2233
Author(s):  
Jilly Frances Evans ◽  
Kseniya Obraztsova ◽  
Susan M. Lin ◽  
Vera P. Krymskaya

The mechanistic target of rapamycin (mTOR) and wingless-related integration site (Wnt) signal transduction networks are evolutionarily conserved mammalian growth and cellular development networks. Most cells express many of the proteins in both pathways, and this review will briefly describe only the key proteins and their intra- and extracellular crosstalk. These complex interactions will be discussed in relation to cancer development, drug resistance, and stem cell exhaustion. This review will also highlight the tumor-suppressive tuberous sclerosis complex (TSC) mutated, mTOR-hyperactive lung disease of women, lymphangioleiomyomatosis (LAM). We will summarize recent advances in the targeting of these pathways by monotherapy or combination therapy, as well as future potential treatments.


Neonatology ◽  
1981 ◽  
Vol 40 (3-4) ◽  
pp. 204-208 ◽  
Author(s):  
R.D.G. Milner ◽  
L. Pownall
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document