Population genetics of winter moth: Identifying the origin of invasive populations of winter mothin North America

2016 ◽  
Author(s):  
Jeremy C. Andersen
Author(s):  
Andrew V. Gougherty

In the northern hemisphere, many species have been reported to have greater genetic diversity in southern populations than northern populations - ostensibly due to migration northward following the last glacial maximum (LGM). The generality of this pattern, while well-established for some taxa, remains unclear for North American trees. To address this issue, I collected published population genetics data for 73 North American tree species, and tested whether genetic diversity was associated with latitude or longitude and whether geographic trends were associated with dispersal traits, range or study characteristics. I found there were no general geographic patterns in genetic diversity, and the strength of the geographic gradients were not associated with any species or study characteristics. Species in the northern and western regions of North America tended to have more species with genetic diversity that declined with latitude, but most species had no significant trend. This work shows that North American trees have complex, individualistic, patterns of genetic diversity that may negate explanation by any particular dispersal trait or range characteristic.


2016 ◽  
Vol 92 (1) ◽  
pp. 38-64 ◽  
Author(s):  
Maria D. Esteve-Gassent ◽  
Ivan Castro-Arellano ◽  
Teresa P. Feria-Arroyo ◽  
Ramiro Patino ◽  
Andrew Y. Li ◽  
...  

2010 ◽  
Vol 103 (2) ◽  
pp. 135-145 ◽  
Author(s):  
Joseph S. Elkinton ◽  
George H. Boettner ◽  
Marinko Sremac ◽  
Rodger Gwiazdowski ◽  
Roy R. Hunkins ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Edward Pfeiler ◽  
Carlos A. Flores-López ◽  
Jesús Gerardo Mada-Vélez ◽  
Juan Escalante-Verdugo ◽  
Therese A. Markow

The population genetics and phylogenetic relationships ofCulexmosquitoes inhabiting the Sonoran Desert region of North America were studied using mitochondrial DNA and microsatellite molecular markers. Phylogenetic analyses of mitochondrial cytochromecoxidase subunit I (COI) from mosquitoes collected over a wide geographic area, including the Baja California peninsula, and mainland localities in southern Arizona, USA and Sonora, Mexico, showed several well-supported partitions corresponding toCx. quinquefasciatus, Cx. tarsalis,and two unidentified species,Culexsp. 1 and sp. 2.Culex quinquefasciatuswas found at all localities and was the most abundant species collected.Culex tarsaliswas collected only at Tucson, Arizona and Guaymas, Sonora. The two unidentified species ofCulexwere most abundant at Navojoa in southern Sonora. Haplotype and nucleotide diversities in the COI gene segment were substantially lower inCx. quinquefasciatuscompared with the other three species. Analysis of molecular variance revealed little structure among seven populations ofCx. quinquefasciatus, whereas significant structure was found between the two populations ofCx. tarsalis. Evidence for an historical population expansion beginning in the Pleistocene was found forCx. tarsalis. Possible explanations for the large differences in genetic diversity betweenCx. quinquefasciatusand the other species ofCulexare presented.


Author(s):  
Jeremy Andersen ◽  
Nathan Havill ◽  
Adalgisa Caccone ◽  
Joseph Elkinton

Reconstructing the geographic origins of invasive species is critical for establishing effective management strategies. Frequently, molecular investigations are undertaken when the source population is not known, however; these analyses are constrained both by the amount of diversity present in the native region and by changes in the genetic background of the invading population following bottlenecks and/or hybridization events. Here we explore the geographical origins of the invasive winter moth (Operopthera brumata L.) that has caused widespread defoliation to forests, orchards, and crops in four discrete regions: Nova Scotia, British Columbia, Oregon, and the northeastern United States. It is not known whether these represent independent introductions to North America, or “stepping stone” spread among regions. Using a combination of Bayesian assignment and approximate Bayesian computation methods, we analyzed a population genetic dataset of 24 polymorphic microsatellite loci. We estimate that winter moth was introduced to North America on at least four occasions, with the Nova Scotian and British Columbian populations likely being introduced from France and Sweden, respectively; the Oregonian population likely being introduced from either the British Isles or northern Fennoscandia; and the population in the northeastern United States likely being introduced from somewhere in Central Europe. To our surprise, we found that hybridization has not played a large role in the establishment of winter moth populations even though previous reports have documented widespread hybridization between winter moth and a native congener. We discuss the impact of genetic bottlenecks on analyses meant to determine region of origin.


2008 ◽  
Vol 17 (9) ◽  
pp. 2149-2163 ◽  
Author(s):  
CURT L. ELDERKIN ◽  
ALAN D. CHRISTIAN ◽  
JANICE L. METCALFE-SMITH ◽  
DAVID J. BERG

Sign in / Sign up

Export Citation Format

Share Document