Magma flow paths and strain patterns in magma chambers growing by floor subsidence: a model based on magnetic fabric study of shallow-level plutons in the Štiavnica volcano–plutonic complex, Western Carpathians

2014 ◽  
Vol 76 (11) ◽  
Author(s):  
Filip Tomek ◽  
Jiří Žák ◽  
Martin Chadima
2020 ◽  
Author(s):  
Anton Latyshev ◽  
Victor Chmerev ◽  
Victor Zaitsev

<p>Products of the Permian-Triassic magmatic activity in the Kotuy river valley consist of two contrasting in composition groups: 1) tholeiitic basalts, similar to the main volume of the Siberian Traps; 2) alkaline-ultramafic rocks which are extremely rare in other regions of the Siberian platform. Alkaline lavas and tuffs in the Kotuy river valley are exposed only in limited area (Arydzhangsky and Khardakhsky formations), however, multiphase circular plutons (Kugda, Odikhincha) and swarms of radial and parallel dikes marks the essentially wider territory of the manifestation of alkaline magmatic activity.</p><p>Here we present the preliminary results of the investigation of AMS in the dike complex of alkaline lamprophyres from the Kotuy river valley. The majority of dikes demonstrate I-type of the magnetic fabric, when the medium axes K2 of AMS ellipsoid is orthogonal to the contact of intrusion. In dikes where the minimal axis K3 is subvertical and maximal axis K1 is flat, we interpret this magnetic fabric as a result of cooling of the static magma column after the emplacement in the setting of horizontal extension (Park et al., 1988; Raposo and Ernesto, 1995). Also, N-type and R-type of magnetic fabric were identified as well. In some intrusions, the orientation of the axes of AMS ellipsoid changes from the contact zones to the inner part if intrusion. In this case, we used data from the contact zones for the magma flow reconstruction.</p><p>Analysis of the maximal axis K1 orientation in different dikes showed that in majority of bodies it shallowly plunges to the west. This corresponds to the lateral magma flow from west to east during the emplacement. Consequently, formation of the studied dikes is not directly related to Kugda pluton, which is located 8 km eastward. The emplacement of dikes occurred from the magmatic center located westward from the Kotuy river valley and is not associated with any known large massifs. Petrographic similarity of the studied dikes to the lavas of Arydzhangsky formation allows us to suggest that they are coeval. This implies the wider area of manifestation of the Arydzhangsky magmatic stage.</p><p>This work was supported by RFBR (projects 18-35-20058, 18-05-70094, 17-05-01121 and 20-05-00573).</p>


2020 ◽  
Author(s):  
Ivan Utkin ◽  
Oleg Melnik

<p>The main mechanism of transport of magma in the Earth’s crust is the formation of cracks, or dikes, through which the melt moves towards the surface under the action of buoyancy forces and tectonic stresses. Due to the structural features of the crust or external stress fields, dikes often do not reach the surface, but penetrate the localized region in which the rocks melt, leading to the formation of magmatic chambers, whose volume can exceed thousands of cubic kilometers. We present a model of the formation of a magma chamber during the intrusion of dikes at a given flow rate. The model is based on the solution of heat equation and considers the actual melting diagrams of magma and rocks. It Is shown that, in case of magmatic fluxes typical of island arc volcanoes, magma chambers are formed over hundreds of years from the beginning of magma intrusion. The influence of the magma flow rate, the size of the dikes and their orientation on the volume of the formed magma chamber and its shape was investigated. The size of the chamber significantly exceeds the area of dike intrusion due to the displacement of magma and rocks of the crust, their heating up and melting. To calculate displacement of rock and magma in a numerical simulation, a hybrid method based on PIC/FLIP interpolation is developed, making it possible to avoid unphysical mixing due to numerical dissipation, thus preserving the fine details of the formed magma chamber.</p><p>This work was supported by RFBR, project number 18-01-00352</p>


1999 ◽  
Vol 307 (1-2) ◽  
pp. 93-111 ◽  
Author(s):  
František Hrouda ◽  
Štěpánka Táborská ◽  
Karel Schulmann ◽  
Josef Ježek ◽  
David Dolejš

2011 ◽  
Vol 24 (1) ◽  
pp. 45-58 ◽  
Author(s):  
Jiří Žák ◽  
Igor Soejono ◽  
Vojtěch Janoušek ◽  
Zdeněk Venera

AbstractAt Pitt Point, the east coast of Graham Land (Antarctic Peninsula), the Early to Middle Jurassic (Toarcian–Aalenian) rhyolite dykes form two coevally emplaced NNE–SSW and E–W trending sets. The nearly perpendicular dyke sets define a large-scale chocolate-tablet structure, implying biaxial principal extension in the WNW–ESE and N–S directions. Along the nearby north-eastern slope of Mount Reece, the WNW–ESE set locally dominates suggesting variations in the direction and amount of extension. Magnetic fabric in the dykes, revealed using the anisotropy of magnetic susceptibility (AMS) method, indicates dip-parallel to dip-oblique (?upward) magma flow. The dykes are interpreted as representing sub-volcanic feeder zones above a felsic magma source. The dyke emplacement was synchronous with the initial stages of the Weddell Sea opening during Gondwana break-up, but it remains unclear whether it was driven by regional stress field, local stress field above a larger plutonic body, or by an interaction of both.


2008 ◽  
Vol 170 (3-4) ◽  
pp. 247-261 ◽  
Author(s):  
C. Aubourg ◽  
G. Tshoso ◽  
B. Le Gall ◽  
H. Bertrand ◽  
J.-J. Tiercelin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document