emplacement mechanism
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 12)

H-INDEX

16
(FIVE YEARS 2)

Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 1-26
Author(s):  
Philip J. Shaller ◽  
Macan Doroudian ◽  
Michael W. Hart

Abstract Long-runout landslides are well-known and notorious geologic hazards in many mountainous parts of the world. Commonly encompassing enormous volumes of debris, these rapid mass movements place populations at risk through both direct impacts and indirect hazards, such as downstream flooding. Despite their evident risks, the mechanics of these large-scale landslides remain both enigmatic and controversial. In this work, we illuminate the inner workings of one exceptionally well-exposed and well-preserved long-runout landslide of late Pleistocene age located in Eureka Valley, east-central California, Death Valley National Park. The landslide originated in the detachment of more than 5 million m3 of Cambrian bedrock from a rugged northwest-facing outcrop in the northern Last Chance Range. Its relatively compact scale, well-preserved morphology, varied lithologic composition, and strategic dissection by erosional processes render it an exceptional laboratory for the study of the long-runout phenomenon in a dry environment. The landslide in Eureka Valley resembles, in miniature, morphologically similar “Blackhawk-like” landslides on Earth, Mars, and minor planet Ceres, including the well-known but much larger Blackhawk landslide of southern California. Like these other landslides, the landslide in Eureka Valley consists of a lobate, distally raised main lobe bounded by raised lateral levees. Like other terrestrial examples, it is principally composed of pervasively fractured, clast-supported breccia. Based on the geologic characteristics of the landslide and its inferred kinematics, a two-part emplacement mechanism is advanced: (1) a clast-breakage mechanism (cataclasis) active in the bedrock canyon areas and (2) sliding on a substrate of saturated sediments encountered and liquefied by the main lobe of the landslide as it exited the main source canyon. Mechanisms previously hypothesized to explain the high-speed runout and morphology of the landslide and its Blackhawk-like analogs are demonstrably inconsistent with the geology, geomorphology, and mineralogy of the subject deposit and its depositional environment.


Geology ◽  
2020 ◽  
Vol 48 (9) ◽  
pp. 898-902
Author(s):  
R.J. Walker ◽  
S.P.A. Gill

Abstract Saucer-shaped sills are common in sedimentary basins worldwide. The saucer shape relates to asymmetric sill-tip stress distributions during intrusion caused by bending of the overburden. Most saucer-shaped sill models are constructed using a magma-analogue excess source pressure (Po) to drive host-rock failure, but without tectonic stress. Here we present axisymmetric finite-element simulations of radially propagating sills for a range of tectonic stress (σr) conditions, from horizontal tension (σr < 0) to horizontal compression (0 < σr). Response to σr falls into four regimes, based on sill geometry and failure mode of the host rock. The regimes are considered in terms of the ratio of tectonic stress versus magma source pressure R = σr/Po: (I) initially seeded sills transition to a dike during horizontal extension (R < 0); (II) with R increasing from 0 towards 1 (compressive σr), sill base length increases and sill incline decreases; (III) where 1 < R < 2, sill base length relatively decreases and sill incline increases; and (IV) where R > 2, sills grow as inclined sheets. Sills in regimes I–III grow dominantly by tensile failure of the host rock, whereas sills in regime IV grow by shear failure of the host rock. Varying σr achieves a range of sill geometries that match natural sill profiles. Tectonic stress therefore represents a primary control on saucer-shaped sill geometry and emplacement mechanism.


2020 ◽  
Author(s):  
Huabiao Qiu ◽  
Wei Lin ◽  
Yan Chen ◽  
Michel Faure

<p>To better understand the Late Triassic tectonic setting in the northern North China Craton (NCC), a multidisciplinary investigation, including structural geology, geochronology, anisotropy of magnetic susceptibility (AMS) and gravity modeling, has been carried out in the Dushan pluton. The Dushan pluton consists of monzogranite and biotite-rich facies along the pluton margin without sharp contact between them. The granite varies southwestwards from isotropic texture to arcuate gneissic structures, with locally mylonitic structures. The intensity of solid-state deformation increases southwestwards across the pluton, leaving preserved magmatic fabrics in the northeastern part. The compatible outward dipping magmatic and solid-state magnetic fabrics, together with mesoscopic fabrics, define an elliptic dome-like pattern with a NE-SW oriented long axis, despite the fabrics dip inwards in the southeastern margin of the pluton. Combining gravity modeling, the Dushan pluton presents an overall tabular or tongue-like shape with a northeastern root. The magnetic lineations nearly strike NE-SW, concordant with the stretching lineations observed in the mylonitic zones. We propose the emplacement mode that the Dushan pluton emplaced southwards through the feeder zone in its northeast, beginning probably with a sill. The later successive magma batches may laterally and upwardly inflate, deform and even recrystallize the former cool-down magma. This inflation forms an arcuate, gneissic to mylonitic foliation in the southwestern margin. The Dushan pluton is considered as typically post-tectonic in emplacement, recording a Late Triassic post-tectonic setting of the northern NCC.</p>


10.1144/sp489 ◽  
2020 ◽  
Vol 489 (1) ◽  
pp. NP-NP
Author(s):  
S. Dey ◽  
J.-F. Moyen

Granitoids form the bulk of the Archean continental crust and preserve key information on early Earth evolution. India hosts five main Archean cratonic blocks (Aravalli, Bundelkhand, Singhbhum, Bastar and Dharwar). This book summarizes the available information on Archean granitoids of Indian cratons. The chapters cover a broad spectrum of themes related to granitoid typology, emplacement mechanism, petrogenesis, phase-equilibria modelling, temporal distribution, tectonic setting, and their roles in fluid evolution, metal delivery and mineralizations. The book presents a broader picture incorporating regional- to cratons-scale comparisons, implications for Archean geodynamic processes, and temporal changes thereof. This synthesis work, integrating modern concepts on granite petrology and crustal evolution, offers an irreplaceable body of reference information for any geologist interested in Archean Indian granitoids.


Geosphere ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 182-209 ◽  
Author(s):  
Tobias Mattsson ◽  
Steffi Burchardt ◽  
Karen Mair ◽  
Joachim Place

Abstract The Mourne Mountains magmatic center in Northern Ireland consists of five successively intruded granites emplaced in the upper crust. The Mourne granite pluton has classically been viewed as a type locality of a magma body emplaced by cauldron subsidence. Cauldron subsidence makes space for magma through the emplacement of ring dikes and floor subsidence. However, the Mourne granites were more recently re-interpreted as laccoliths and bysmaliths. Laccolith intrusions form by inflation and dome their host rock. Here we perform a detailed study of the deformation in the host rock to the Mourne granite pluton in order to test its emplacement mechanism. We use the host-rock fracture pattern as a passive marker and microstructures in the contact-metamorphic aureole to constrain large-scale magma emplacement-related deformation. The dip and azimuth of the fractures are very consistent on the roof of the intrusion and can be separated into four steeply inclined sets dominantly striking SE, S, NE, and E, which rules out pluton-wide doming. In contrast, fracture orientations in the northeastern wall to the granites suggest shear parallel to the contact. Additionally, contact-metamorphic segregations along the northeastern contact are brecciated. Based on the host-rock fracture pattern, the contact aureole deformation, and the north-eastward–inclined granite-granite contacts, we propose that mechanisms involving either asymmetric “trap-door” floor subsidence or laccolith and bysmalith intrusion along an inclined or curved floor accommodated the emplacement of the granites and led to deflection of the northeastern wall of the intrusion.


2019 ◽  
Vol 53 (3) ◽  
pp. 460-465
Author(s):  
Yuxuan Zhu ◽  
Fuchu Dai ◽  
Xin Yao

Based on remote sensing interpretation, detailed field investigation of the deposit landforms and previous research, we propose that the emplacement mechanism of the Tahman rock avalanche, a giant Holocene rock avalanche, can be divided into three distinct phases: an extension-dominated sliding phase, a lateral shear-dominated sliding phase and a compression-dominated sliding phase.


2019 ◽  
Vol 124 ◽  
pp. 120-135 ◽  
Author(s):  
Olivier Galland ◽  
Juan B. Spacapan ◽  
Ole Rabbel ◽  
Karen Mair ◽  
Frederico González Soto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document