Instabilities in the summit region of Mount Etna during the 1999 eruption

2001 ◽  
Vol 63 (8) ◽  
pp. 526-535 ◽  
Author(s):  
Sonia Calvari ◽  
Harry Pinkerton
Keyword(s):  
2021 ◽  
Author(s):  
Morelia Urlaub ◽  
Alessandro Bonforte ◽  
Jacob Geersen ◽  
Felix Gross ◽  
Bruna Pandolpho

<p><span>Collapses of coastal and ocean island volcanoes can cause damaging tsunamis and thus pose ocean-wide hazards. To assess the collapse hazard of an unstable flank, a profound understanding of its structural setting and active deformation is essential. This knowledge is, however, often missing, especially for the remote and submerged offshore part of the edifice. Long before satellite-based techniques were available, observations of extensional structures in the summit region and transpressive to compressional structures farther downslope helped to constrain flank instability onshore at many volcanoes globally. Similar deformation structures are also expected offshore where they might be even better preserved due to the absence of anthropogenic influence, limited weathering and erosion. However, in the offshore realm structures related to flank instability are masked by and interact with other processes that act on underwater slopes, such as bottom currents, downslope sediment transport, and regional tectonics. Furthermore, the remote location of offshore flanks complicates geophysical, geomorphological, and geological investigations. Using (micro-) bathymetric and high-resolution seismic data we analyse the seascape forming processes at the Eastern Sicily continental slope at the foot of Mount Etna's unstable south-eastern flank. We untangle seafloor structures related to volcanotectonic, sedimentary, and regional tectonic processes. This allows singling out patterns and structures related to volcano flank instability, such as the lateral and outward boundaries of the unstable flank. We identify a strike-slip fault that changes its morphological appearance from a sharp linear feature atop a pressure ridge north of Catania Canyon to an almost smooth seafloor further downslope, where gravitational sediment transport outbeats volcanotectonic activity. Sediment transport from the continent to the abyss occurs along several canyons and channels that partly align with fault systems. Furthermore, uplift at the distant toe of Etna‘s south-eastern flank may indicate compression from the downwards moving flank, while at the same time provoking erosional responses, e.g. landslides. This new information provides important constraints for kinematic models that seek to explain the drivers of flank instability. It also forms the base for future studies that will infer the styles and rates of offshore flank deformation from the geological record. </span></p>


Data Series ◽  
10.3133/ds293 ◽  
2007 ◽  
Author(s):  
Dillon R. Dutton ◽  
David W. Ramsey ◽  
Peggy E. Bruggman ◽  
Tracey J. Felger ◽  
Ellen Lougee ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Julia Woitischek ◽  
Nicola Mingotti ◽  
Marie Edmonds ◽  
Andrew W. Woods

AbstractMany of the standard volcanic gas flux measurement approaches involve absorption spectroscopy in combination with wind speed measurements. Here, we present a new method using video images of volcanic plumes to measure the speed of convective structures combined with classical plume theory to estimate volcanic fluxes. We apply the method to a nearly vertical gas plume at Villarrica Volcano, Chile, and a wind-blown gas plume at Mount Etna, Italy. Our estimates of the gas fluxes are consistent in magnitude with previous reported fluxes obtained by spectroscopy and electrochemical sensors for these volcanoes. Compared to conventional gas flux measurement techniques focusing on SO2, our new model also has the potential to be used for sulfur-poor plumes in hydrothermal systems because it estimates the H2O flux.


1980 ◽  
Vol 43 (330) ◽  
pp. 765-770 ◽  
Author(s):  
A. M. Duncan ◽  
R. M. F. Preston

SummaryThe chemical variation of clinopyroxene phenocrysts from the trachybasaltic lavas of Etna volcano is described. The phenocrysts show a limited, but distinct trend in chemical variation from calcic-augite in the hawaiites to augite in the benmoreites. The trend of this variation is unusual, being one of Mg-enrichment with differentiation of the magma. Ca shows a steady decrease in the clinopyroxenes from the hawaiites to the benmoreites. Na, however, shows little chemical variation in the pyroxenes. The trace element chemistry is briefly examined. The clinopyroxenes show well-developed oscillatory and sector zoning. The basal {11} sectors are enriched in Si and Mg and depleted in Ti, Al, and Fe relative to the {100}, {110}, and {010} prism sectors.


2013 ◽  
Vol 118 (10) ◽  
pp. 5252-5273 ◽  
Author(s):  
F. Bozzano ◽  
M. Gaeta ◽  
L. Lenti ◽  
S. Martino ◽  
A. Paciello ◽  
...  
Keyword(s):  

2016 ◽  
Vol 23 (5) ◽  
pp. 964-972 ◽  
Author(s):  
A. Nicoletti ◽  
R. Vasta ◽  
V. Venti ◽  
G. Mostile ◽  
S. Lo Fermo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document