convective structures
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 22)

H-INDEX

23
(FIVE YEARS 2)

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 127
Author(s):  
Brian P. Reen ◽  
Huaqing Cai ◽  
Robert E. Dumais ◽  
Yuanfu Xie ◽  
Steve Albers ◽  
...  

The combination of techniques that incorporate observational data may improve numerical weather prediction forecasts; thus, in this study, the methodology and potential value of one such combination were investigated. A series of experiments on a single case day was used to explore a 3DVAR-based technique (the variational version of the Local Analysis and Prediction System; vLAPS) in combination with Newtonian relaxation (observation and analysis nudging) for simulating moist convection in the Advanced Research version of the Weather Research and Forecasting model. Experiments were carried out with various combinations of vLAPS and nudging for a series of forecast start times. A limited subjective analysis of reflectivity suggested all experiments generally performed similarly in reproducing the overall convective structures. Objective verification indicated that applying vLAPS analyses without nudging performs best during the 0–2 h forecast in terms of placement of moist convection but worst in the 3–5 h forecast and quickly develops the most substantial overforecast bias. The analyses used for analysis nudging were at much finer temporal and spatial scales than usually used in pre-forecast analysis nudging, and the results suggest that further research is needed on how to best apply analysis nudging of analyses at these scales.


2021 ◽  
Author(s):  
Arnau Amengual

Abstract. On 12 and 13 September 2019, a long-lasting heavy precipitation episode (HPE) affected the València, Murcia and Almería regions in eastern Spain. Observed rainfall amounts were close to 500 mm in 48 h, being the highest cumulative precipitation registered in some rain-gauges for the last century. Subsequent widespread flash flooding caused seven fatalities and estimated economical losses above 425 million EUR. High-resolution precipitation estimates from weather radar observations and flood response from stream-gauges are used in combination with a fully-distributed hydrological model to examine the main hydrometeorological processes within the HyMeX program. This HPE was characterized by successive, well-organized convective structures that impacted a spatial extent of 7500 km2, with rainfall amounts equal or larger than 200 mm. The main factors driving the flood response were quasi-stationarity of heavy precipitation, very dry initial soil moisture conditions and large storage capacities. Most of the examined catchments exhibited a dampened and delayed hydrological response to cumulative precipitation: Until runoff thresholds were exceeded, infiltration-excess runoff generation did not start. This threshold-based hydrological behaviour may impact the shape of flood peak distributions, hindering strict flood frequency statistical analysis due to the generally limited lengths of data records in arid and semi-arid catchments. As an alternative, simple scaling theory between flood magnitude and total rainfall amount is explored.


2021 ◽  
Vol 14 (9) ◽  
pp. 5435-5465
Author(s):  
Eckhard Kadasch ◽  
Matthias Sühring ◽  
Tobias Gronemeier ◽  
Siegfried Raasch

Abstract. In this paper, we present a newly developed mesoscale nesting interface for the PALM model system 6.0, which enables PALM to simulate the atmospheric boundary layer under spatially heterogeneous and non-stationary synoptic conditions. The implemented nesting interface, which is currently tailored to the mesoscale model COSMO, consists of two major parts: (i) the preprocessor INIFOR (initialization and forcing), which provides initial and time-dependent boundary conditions from mesoscale model output, and (ii) PALM's internal routines for reading the provided forcing data and superimposing synthetic turbulence to accelerate the transition to a fully developed turbulent atmospheric boundary layer. We describe in detail the conversion between the sets of prognostic variables, transformations between model coordinate systems, as well as data interpolation onto PALM's grid, which are carried out by INIFOR. Furthermore, we describe PALM's internal usage of the provided forcing data, which, besides the temporal interpolation of boundary conditions and removal of any residual divergence, includes the generation of stability-dependent synthetic turbulence at the inflow boundaries in order to accelerate the transition from the turbulence-free mesoscale solution to a resolved turbulent flow. We demonstrate and evaluate the nesting interface by means of a semi-idealized benchmark case. We carried out a large-eddy simulation (LES) of an evolving convective boundary layer on a clear-sky spring day. Besides verifying that changes in the inflow conditions enter into and successively propagate through the PALM domain, we focus our analysis on the effectiveness of the synthetic turbulence generation. By analysing various turbulence statistics, we show that the inflow in the present case is fully adjusted after having propagated for about two to three eddy-turnover times downstream, which corresponds well to other state-of-the-art methods for turbulence generation. Furthermore, we observe that numerical artefacts in the form of grid-scale convective structures in the mesoscale model enter the PALM domain, biasing the location of the turbulent up- and downdrafts in the LES. With these findings presented, we aim to verify the mesoscale nesting approach implemented in PALM, point out specific shortcomings, and build a baseline for future improvements and developments.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Julia Woitischek ◽  
Nicola Mingotti ◽  
Marie Edmonds ◽  
Andrew W. Woods

AbstractMany of the standard volcanic gas flux measurement approaches involve absorption spectroscopy in combination with wind speed measurements. Here, we present a new method using video images of volcanic plumes to measure the speed of convective structures combined with classical plume theory to estimate volcanic fluxes. We apply the method to a nearly vertical gas plume at Villarrica Volcano, Chile, and a wind-blown gas plume at Mount Etna, Italy. Our estimates of the gas fluxes are consistent in magnitude with previous reported fluxes obtained by spectroscopy and electrochemical sensors for these volcanoes. Compared to conventional gas flux measurement techniques focusing on SO2, our new model also has the potential to be used for sulfur-poor plumes in hydrothermal systems because it estimates the H2O flux.


Author(s):  
Erin B. Munsell ◽  
Scott A. Braun ◽  
Fuqing Zhang

AbstractThis study utilizes brightness temperatures (Tb’s) observed by the infrared longwave window band (Ch 14; 11.2 μm) from the Geostationary Operational Environmental Satellite-16 (GOES-16) to examine the structure of Hurricanes Harvey, Maria, and Michael throughout their lifetimes. During the times leading up to their rapid intensifications (RI), two-dimensional inner-core structures are examined to analyze the strength and location of the developing convection. Moderate vertical wind shear in the environments of Harvey and Michael induced a pronounced convective asymmetry prior to RI, followed by a rapid axisymmetrization that occurred essentially in conjunction with RI. The evolutions of the tropical cyclones’ (TCs’) coldest Tb’s indicate that the inner-core convective activity began to increase in the 12 h prior to RI onset, primarily in 2–4-h substantial “bursts”, while substantial convection dominated essentially the entirety of the region within 100 km of the surface center within 12 h of the onset of intensification.Azimuthally averaged Tb evolutions illustrate the development of each TCs’ eye and eyewall, the variability of the radial extent of the central dense overcast associated with the diurnal cycle, as well as details of the evolving convective structures throughout intensification. Hövmoller diagrams of data at constant radii reveal areas of cold Tb’s propagating around the TCs on timescales of 2–3-h. The examination of these features in a deep-layer shear-relative sense reveals that they initiate primarily downshear of the TCs’ surface centers. As RI is reached, these areas of convection are able to propagate into the upshear quadrants, which helps facilitate the onset of more substantial intensification.


2021 ◽  
Author(s):  
Andrei Sukhanovskii ◽  
Elena Popova

<p>The present laboratory study is focused on the role of convective rolls in enhancement of the heat flux from the sea and triggering of the process of rapid intensification of tropical cyclones. The appearance of coherent convective structures such as thermals and rolls are registered by different optical techniques and temperature measurements. Two-dimensional velocity fields are used for the study of the structure and characteristics of the flow. The heat flux from the heating plate to the fluid is measured directly. Obtained results clearly show that rapid intensification of a laboratory analog of a tropical cyclone is tightly linked with the heat transfer process in the boundary layer. Formation of secondary convective structures strongly increases the heat transfer and intensity of convective circulation. Intensity of radial inflow is a crucial aspect for the intensification of cyclonic vortex, hence rapid variation of the heat transfer is a factor that has a substantial influence on the dynamics of a laboratory vortex. </p>


2020 ◽  
Author(s):  
Eckhard Kadasch ◽  
Matthias Sühring ◽  
Tobias Gronemeier ◽  
Siegfried Raasch

Abstract. In this paper, we present a newly developed mesoscale nesting interface for the PALM model system 6.0, which enables PALM to simulate the atmospheric boundary layer under spatially heterogeneous and non-stationary synoptic conditions. The implemented nesting interface, which is currently tailored to the mesoscale model COSMO, consists of two major parts: (i) the preprocessor INIFOR, which provides initial and time-dependent boundary conditions from mesoscale model output and (ii) PALM's internal routines for reading the provided forcing data and superimposing synthetic turbulence to accelerate the transition to a fully developed turbulent atmospheric boundary layer. We describe in detail the conversion between the sets of prognostic variables, transformations between model coordinate systems, as well as data interpolation onto PALM's grid, which are carried out by INIFOR. Furthermore, we describe PALM's internal usage of the provided forcing data, which besides the temporal interpolation of boundary conditions and removal of any residual divergence includes the generation of stability-dependent synthetic turbulence at the inflow boundaries in order to accelerate the transition from the turbulence-free mesoscale solution to a resolved turbulent flow. We demonstrate and evaluate the nesting interface by means of a semi-idealized benchmark case. We carried out a large-eddy simulation (LES) of an evolving convective boundary layer on a clear-sky spring day. Besides verifying that changes in the inflow conditions enter into and successively propagate through the PALM domain, we focus our analysis on the effectiveness of the synthetic turbulence generation. By analysing various turbulence statistics, we show that the inflow in the present case is fully adjusted after having propagated for about 1.5 eddy turn-over times downstream, which corresponds well to other state-of-the-art methods for turbulence generation. Furthermore, we observe that numerical artefacts in the form of under-resolved convective structures in the mesoscale model enter the PALM domain, biasing the location of the turbulent up- and downdrafts in the LES. With these findings presented, we aim to verify the mesoscale nesting approach implemented in PALM, point out specific shortcomings, and build a baseline for future improvements and developments.


2020 ◽  
Vol 37 (4) ◽  
pp. 665-685
Author(s):  
Ying Pan ◽  
Edward G. Patton

AbstractA recently proposed multisensor stationarity analysis technique (MSATv1) is improved to eliminate the initial interrogation of time-averaged wind directions, a redundant and potentially biasing procedure for a technique capable of detecting changes in mean wind directions. The new technique, MSATv2, satisfies two basic expectations that are not guaranteed in MSATv1: 1) a nonstationary event should not belong to any stationary interval identified with a given stringency, and 2) nonstationary events identified with an arbitrary stringency should continue to be identified as nonstationary with increasing stringency. These expectations are confirmed by applying MSATv2 to two long periods, during the defoliated phase of the Canopy Horizontal Array Turbulence Study (CHATS), whose durations are determined solely by data availability. MSATv2 successfully determines visually trivial and nontrivial nonstationary transitions, uncovering details of the time evolution of dynamic processes. MSATv2 yields ensemble-average estimates of mean wind speeds and directions with well-controlled and quantifiable uncertainties for atmospheric stability conditions ranging from near neutral to free convection. These results enable interrogation of the observed canopy turbulence response to atmospheric stability in isolation from contamination by spatial variation with position relative to canopy elements. MSATv2 results also reveal the connection between the presence of organized convective structures and variability in mean shear, showing the role of organized convective structures in the observed relationship between the bulk drag coefficient and atmospheric instability.


2020 ◽  
Author(s):  
Xin Wang ◽  
Chuanyi Tu ◽  
Jiansen He

<p>Elsässer Variables z± are widely considered as outward and inward propagating Alfvén waves in the solar wind turbulence study. It is believed that they can interact nonlinearly with each other to generate energy cascade. However, z− variations sometimes show a feature of convective structures or a combination of white noise and pseudo-structures. Here we present the amplitude of z± in σc (normalized cross helicity) - σr (normalized residual energy) plane in order to get some information on the nature of z±. Measurements from the WIND spacecraft in the slow solar wind during 2007-2009 are used for analysis. In each interval with length of 20 min, we calculate σc, σr, and consider the variance of z± as the amplitude of them for the given interval. We find that in the σc-σr plane, the level contours of the average z- amplitude present a feature of nearly horizontal stratification, which means that the amplitude of z- is independent of the value of σc, and is just related to σr. The horizontal-stratification feature suggests that z- could be convective structures. While the level contours of the average amplitude of z+ are approximately concentric semicircles, and the circle with larger radius corresponds to larger z+ amplitude. It indicates that z+ represents Alfvén waves. The nature of z± in the slow wind here will help us to understand more about the cascade process in the solar wind turbulence.</p>


2020 ◽  
Author(s):  
Robert Malte Polzin ◽  
Annette Müller ◽  
Peter Nevir ◽  
Henning Rust ◽  
Peter Koltai

<p>The presented work contains an investigation of the stochastic aggregation of convective structures on different scales in the atmosphere. A<br>computational framework is applied that provides highly scalable identification of reduced Bayesian models. The deterministic large scale<br>flow variables are reduced into latent states, whereas the stochastic small scale convective structures are affiliated to these. The analysis of<br>the latent states in number and maximization reduction improves the understanding for the large scale forcing of convective processes. The<br>convective structures are determined by vertical velocities. Different variables of the large-scale flow, such as the convective available<br>potential energy, available moisture, vertical windshear and the Dynamic State Index (DSI), a diabaticity indicator, are investigated. Our approach<br>does not require a distributional assumption but works instead with a discretised and categorised state vector.</p>


Sign in / Sign up

Export Citation Format

Share Document