scholarly journals Compartment-specific metabolome labeling enables the identification of subcellular fluxes that may serve as promising metabolic engineering targets in CHO cells

Author(s):  
Andy Wiranata Wijaya ◽  
Andreas Ulmer ◽  
Lara Hundsdorfer ◽  
Natascha Verhagen ◽  
Attila Teleki ◽  
...  

Abstract13C labeling data are used to calculate quantitative intracellular flux patterns reflecting in vivo conditions. Given that approaches for compartment-specific metabolomics exist, the benefits they offer compared to conventional non-compartmented 13C flux studies remain to be determined. Using compartment-specific labeling information of IgG1-producing Chinese hamster ovary cells, this study investigated differences of flux patterns exploiting and ignoring metabolic labeling data of cytosol and mitochondria. Although cellular analysis provided good estimates for the majority of intracellular fluxes, half of the mitochondrial transporters, and NADH and ATP balances, severe differences were found for some reactions. Accurate flux estimations of almost all iso-enzymes heavily depended on the sub-cellular labeling information. Furthermore, key discrepancies were found for the mitochondrial carriers vAGC1 (Aspartate/Glutamate antiporter), vDIC (Malate/H+ symporter), and vOGC (α-ketoglutarate/malate antiporter). Special emphasis is given to the flux of cytosolic malic enzyme (vME): it could not be estimated without the compartment-specific malate labeling information. Interesting enough, cytosolic malic enzyme is an important metabolic engineering target for improving cell-specific IgG1 productivity. Hence, compartment-specific 13C labeling analysis serves as prerequisite for related metabolic engineering studies.

1983 ◽  
Vol 3 (8) ◽  
pp. 1468-1477
Author(s):  
K D Mehta ◽  
R S Gupta

Stable mutants which are approximately three- and eightfold resistant to the pyrazolopyrimidine nucleosides formycin A and formycin B (FomR) have been selected in a single step from mutagenized Chinese hamster ovary cells. In cell extracts, the two FomR mutants which were examined were both found to contain no measurable activity of the enzyme adenosine kinase (AK). However, cross-resistance studies with other adenosine analogs such as toyocamycin and tubercidin show that these mutants are distinct from toyocamycin or tubercidin resistant (Toyr) mutants which also contain no measurable AK activity in cell extracts. Studies on the uptake and incorporation of [3H]adenosine and [3H]tubercidin by various mutants and parental cell lines show that unlike the Toyr mutants, which are severely deficient in the phosphorylation of these compounds, the FomR mutants possess nearly normal capacity to phosphorylate these compounds and incorporate them into cellular macromolecules. These results suggest that the FomR mutants contain normal levels of AK activity in vivo. In cell hybrids formed between FomR X FomS cells and FomR X Toyr cells, the formycin-resistant phenotype of both of the FomR mutants behaved codominantly. However, the extracts from these hybrid cells contained either congruent to 50% (FomR X FomS) or no measurable (FomR X Toyr) AK activity, indicating that the lesion in these mutants neither suppresses the wild-type AK activity nor complements the AK deficiency of the Toyr mutants. The presence of AK activity in the FomR mutants in vivo, but not in their cell extracts, along with the codominant behavior of the mutants in hybrids, indicates that the lesions in the FomR mutant are of a novel nature. It is suggested that the genetic lesion in these mutants affects AK activity indirectly and that it may involve an essential cellular function which exists in a complex form with AK. Some implications of these results regarding the mechanism of action of formycin B are discussed.


Blood ◽  
1987 ◽  
Vol 70 (1) ◽  
pp. 206-213 ◽  
Author(s):  
P Mayer ◽  
C Lam ◽  
H Obenaus ◽  
E Liehl ◽  
J Besemer

The in vivo efficacy of glycosylated and nonglycosylated recombinant human granulocyte macrophage colony-stimulating factor (rh GM-CSF) expressed in Chinese hamster ovary cells and Escherichia coli respectively was studied in rhesus monkeys following a daily subcutaneous (SC; three times) or intravenous (IV; over six hours) dose for seven consecutive days. The monkeys responded to the rh GM-CSF with a prompt (within 24 hours) rise in circulating white blood cells (WBCs). Thereafter the total cell counts increased steadily in a dose- dependent manner with repeated dosing to numbers six times over the pretreatment levels. Overall, granulocyte counts increased fivefold, lymphocytes twofold to fourfold, and monocytes threefold to fourfold. Platelets and erythrocytes were unaffected. Within 1 week after the end of treatment the leukocytosis had disappeared. Of the two routes of treatment, SC (three times daily)-administered rh GM-CSF was more effective than the same dose given by a six-hour IV infusion. In addition to inducing leukocytosis, parenterally administered rh GM-CSF primed mature circulating granulocytes for enhanced oxidative metabolism and killing of an E coli strain. These results show that exogenously administered glycosylated or nonglycosylated rh GM-CSF is both an effective stimulator of leukocytosis and a potent activator of the phagocytic function of mature granulocytes in monkeys.


2012 ◽  
Vol 31 (6) ◽  
pp. 584-594 ◽  
Author(s):  
Shayne C. Gad ◽  
Kelly L. Sharp ◽  
Charles Montgomery ◽  
J. Donald Payne ◽  
Glenn P. Goodrich

Gold nanoshells (155 nm in diameter with a coating of polyethylene glycol 5000) were evaluated for preclinical biocompatibility, toxicity, and biodistribution as part of a program to develop an injectable device for use in the photothermal ablation of tumors. The evaluation started with a complete good laboratory practice (GLP) compliant International Organization for Standardization (ISO)-10993 biocompatibility program, including cytotoxicity, pyrogenicity (US Pharmacopeia [USP] method in the rabbit), genotoxicity (bacterial mutagenicity, chromosomal aberration assay in Chinese hamster ovary cells, and in vivo mouse micronucleus), in vitro hemolysis, intracutaneous reactivity in the rabbit, sensitization (in the guinea pig maximization assay), and USP/ISO acute systemic toxicity in the mouse. There was no indication of toxicity in any of the studies. Subsequently, nanoshells were evaluated in vivo by intravenous (iv) infusion using a trehalose/water solution in a series of studies in mice, Sprague-Dawley rats, and Beagle dogs to assess toxicity for time durations of up to 404 days. Over the course of 14 GLP studies, the gold nanoshells were well tolerated and, when injected iv, no toxicities or bioincompatibilities were identified.


1983 ◽  
Vol 3 (8) ◽  
pp. 1468-1477 ◽  
Author(s):  
K D Mehta ◽  
R S Gupta

Stable mutants which are approximately three- and eightfold resistant to the pyrazolopyrimidine nucleosides formycin A and formycin B (FomR) have been selected in a single step from mutagenized Chinese hamster ovary cells. In cell extracts, the two FomR mutants which were examined were both found to contain no measurable activity of the enzyme adenosine kinase (AK). However, cross-resistance studies with other adenosine analogs such as toyocamycin and tubercidin show that these mutants are distinct from toyocamycin or tubercidin resistant (Toyr) mutants which also contain no measurable AK activity in cell extracts. Studies on the uptake and incorporation of [3H]adenosine and [3H]tubercidin by various mutants and parental cell lines show that unlike the Toyr mutants, which are severely deficient in the phosphorylation of these compounds, the FomR mutants possess nearly normal capacity to phosphorylate these compounds and incorporate them into cellular macromolecules. These results suggest that the FomR mutants contain normal levels of AK activity in vivo. In cell hybrids formed between FomR X FomS cells and FomR X Toyr cells, the formycin-resistant phenotype of both of the FomR mutants behaved codominantly. However, the extracts from these hybrid cells contained either congruent to 50% (FomR X FomS) or no measurable (FomR X Toyr) AK activity, indicating that the lesion in these mutants neither suppresses the wild-type AK activity nor complements the AK deficiency of the Toyr mutants. The presence of AK activity in the FomR mutants in vivo, but not in their cell extracts, along with the codominant behavior of the mutants in hybrids, indicates that the lesions in the FomR mutant are of a novel nature. It is suggested that the genetic lesion in these mutants affects AK activity indirectly and that it may involve an essential cellular function which exists in a complex form with AK. Some implications of these results regarding the mechanism of action of formycin B are discussed.


1985 ◽  
Vol 101 (3) ◽  
pp. 755-765 ◽  
Author(s):  
T J Mitchison ◽  
M W Kirschner

We have isolated chromosomes from Chinese hamster ovary cells arrested in mitosis with vinblastine and examined the interactions of their kinetochores with purified tubulin in vitro. The kinetochores nucleate microtubule (MT) growth with complex kinetics. After an initial lag phase, MTs are continuously nucleated with both plus and minus ends distally localized. This mixed polarity seems inconsistent with the formation of an ordered, homopolar kinetochore fiber in vivo. As isolated from vinblastine-arrested cells, kinetochores contain no bound tubulin. The kinetochores of chromosomes isolated from colcemid-arrested cells or of chromosomes incubated with tubulin in vitro are brightly stained after anti-tubulin immunofluorescence. This bound tubulin is probably not in the form of MTs. It is localized to the corona region by immunoelectron microscopy, where it may play a role in MT nucleation in vitro.


2007 ◽  
Vol 18 (5) ◽  
pp. 474-481 ◽  
Author(s):  
Ying Zhang ◽  
Wei Wang ◽  
Yubing Xie ◽  
Weiting Yu ◽  
Huaining Teng ◽  
...  

1998 ◽  
Vol 16 (5) ◽  
pp. 468-472 ◽  
Author(s):  
Martin Fussenegger ◽  
Stefan Schlatter ◽  
Daniel Dätwyler ◽  
Xenia Mazur ◽  
James E. Bailey

1977 ◽  
Vol 73 (3) ◽  
pp. 601-615 ◽  
Author(s):  
RR Gould ◽  
GG Borisy

The structure and function of the centrosomes from Chinese hamster ovary (CHO) cells were investigated by electron microscopy of negatively stained wholemount preparations of cell lysates. Cells were trypsinized from culture dishes, lysed with Triton X-100, sedimented onto ionized, carbon-coated grids, and negatively stained with phosphotungstate. The centrosomes from both interphase and dividing cells consisted of pairs of centrioles, a fibrous pericentriolar material, and a group of virus-like particles which were characteristic of the CHO cells and which served as markers for the pericentriolar material. Interphase centrosomes anchored up to two dozen microtubules when cells were lysed under conditions which preserved native microtubules. When Colcemid-blocked mitotic cells, initially devoid of microtubules, were allowed to recover for 10 min, microtubules formed at the pericentriolar material, but not at the centrioles. When lysates of Colcemid-blocked cells were incubated in vitro with micotubule protein purified from porcine brain tissue, up to 250 microtubules assembled at the centrosomes, similar to the number of microtubules that would normally form at the centrosome during cell division. A few microtubules could also be assembled in vitro onto the ends of isolated centrioles from which the pericentriolar material had been removed, forming characteristic axoneme- like bundles. In addition, microtubules; were assembled onto fragments of densely staining, fibrous material which was tentatively identified as periocentriolar material by its association of CHO can initiate and anchor microtubules both in vivo and in vitro.


Sign in / Sign up

Export Citation Format

Share Document