tubulin binding
Recently Published Documents


TOTAL DOCUMENTS

409
(FIVE YEARS 61)

H-INDEX

45
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Yu Sun ◽  
Jun Zhao

Abstract Background: Cancer is the leading cause of death in the world. The mechanism is not fully elucidated and the therapeutic effect is also unsatisfactory. In our study, we aim to find new target gene in pan-cancer.Methods: Differentially expressed genes (DEGs) was screened out in various types of cancers from GEO database. The expression of DEG (TCEAL2) in tumor cell lines, normal tissues and tumor tissues was calculated. Then the clinical characteristics, DNA methylation, tumor infiltration and gene enrichment of TCEAL2 was studied. Results: TCEAL2 expressions were down-regulated in most cancers. Its expression and methylation were positively or negatively associated with prognosis in different cancers. The tumor infiltration results revealed that TCEAL2 was significantly related with many immune cells especially NK cells and immune-related genes in majority cancers. Furthermore, tau protein and tubulin binding were involved in the molecular function mechanisms of TCEAL2. Conclusion: TCEAL2 may be a novel prognostic marker in different cancers and may affect tumor through immune infiltration.


2021 ◽  
Vol 28 ◽  
Author(s):  
Suresh Paidakula ◽  
Srinivas Nerella ◽  
Shravankumar Kankala ◽  
Ranjith Kumar Kankala

: Although significant progress over several decades has been evidenced in cancer therapy, there still remains a need for the development of novel and effective therapeutic strategies to treat several relapsed and intractable cancers. In this regard, tubulin protein has become one of the efficient and major targets for anticancer drug discovery. Considering the antimitotic ability, several tubulin inhibitors have been developed to act against various cancers. Among various tubulin inhibitors available, combretastatin-A4 (CA-4), a naturally occurring lead molecule, offers exceptional cytotoxicity (including the drug-resistant cell lines) and antivascular effects. Although CA-4 offers exceptional therapeutic efficacy, several new advancements have been proposed, such as the structural modification via A and B rings, as well as cis-olefinic bridging, which provide highly efficient analogs with improved tubulin-binding efficiency to meet the anticancer drug development requirements. This review systematically emphasizes the recent trends and latest developments in the anticancer drug design & discovery, using CA-4 analogs as the tubulin inhibiting agents, highlighting their structure-activity relationships (SAR) and resultant pharmacological efficacies.


2021 ◽  
Author(s):  
Valérie Campanacci ◽  
Agathe Urvoas ◽  
Liza Ammar Khodja ◽  
Magali Aumont-Nicaise ◽  
Magali Noiray ◽  
...  

Microtubule dynamics is regulated by various cellular proteins and perturbed by small molecule compounds. To what extent the mechanism of the former resembles that of the latter is an open question. We report here structures of tubulin bound to the PN2-3 domain of CPAP, a protein controlling the length of the centrioles. We show that an α-helix of the PN2-3 N-terminal region binds and caps the longitudinal surface of the tubulin β subunit. Moreover, a PN2-3 N-terminal stretch lies in a β-tubulin site also targeted by fungal and bacterial peptide-like inhibitors of the vinca domain, sharing a very similar binding mode with these compounds. Therefore, our results identify several characteristic features of cellular partners that bind to this site and highlight a structural convergence of CPAP with small molecules inhibitors of microtubule assembly.


2021 ◽  
Author(s):  
Hugo Arellano-Santoyo ◽  
Rogelio A Hernandez-Lopez ◽  
Emma Stokasimov ◽  
Ray YR Wang ◽  
David Pellman ◽  
...  

The microtubule (MT) cytoskeleton is central to cellular processes including axonal growth, intracellular transport, and cell division, all of which rely on precise spatiotemporal control of MT organization. Kinesin-8s play a key role in regulating MT length by combining highly processive directional motility with MT-end disassembly. However, how kinesin-8 switches between these two apparently opposing activities remains unclear. Here, we define the structural features underlying this molecular switch through cryo-EM analysis of the yeast kinesin-8, Kip3 bound to MTs, and molecular dynamics simulations to approximate the complex of Kip3 with the curved tubulin state found at the MT plus-end. By integrating biochemical and single-molecule biophysical assays, we identified specific intra- and intermolecular interactions that modulate processive motility and MT disassembly. Our findings suggest that Kip3 undergoes conformational changes in response to tubulin curvature that underlie its unique ability to interact differently with the MT lattice than with the MT-end.


2021 ◽  
Author(s):  
YUANWEI FAN ◽  
Natasha Bilkey ◽  
Ram Dixit

Accruing evidence points to the control of microtubule minus-end dynamics as being crucial for the spatial arrangement and function of the microtubule cytoskeleton. In plants, the SPIRAL2 (SPR2) protein has emerged as a microtubule minus-end regulator that is structurally distinct from the animal minus-end regulators. Previously, SPR2 was shown to autonomously localize to microtubule minus ends and decrease their depolymerization rate. Here, we used in vitro and in planta experiments to identify the structural determinants required for SPR2 to recognize and stabilize microtubule minus ends. We show that SPR2 contains a single N-terminal TOG domain that binds to soluble tubulin. The TOG domain, a basic region, and coiled-coil domain are necessary and sufficient to target and stabilize microtubule minus ends. We demonstrate that the coiled-coil domain mediates multimerization of SPR2 that provides avidity for microtubule binding and is essential for binding to soluble tubulin. While TOG domain-containing proteins are traditionally thought to function as microtubule plus-end regulators, our results reveal that nature has repurposed the TOG domain of SPR2 to regulate microtubule minus ends.


Author(s):  
Rajesh Kumar Meher ◽  
Pratyush Pragyandipta ◽  
Praveen Kumar Reddy ◽  
Ravikumar Pedaparti ◽  
Srinivas Kantevari ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4769
Author(s):  
Yihang Guo ◽  
Honghong Wang ◽  
Jeni L. Gerberich ◽  
Samuel O. Odutola ◽  
Amanda K. Charlton-Sevcik ◽  
...  

The selective disruption of tumor-associated vasculature represents an attractive therapeutic approach. We have undertaken the first in vivo evaluation of KGP265, a water-soluble prodrug of a benzosuberene-based tubulin-binding agent, and found promising vascular-disrupting activity in three distinct tumor types. Dose escalation in orthotopic MDA-MB-231-luc breast tumor xenografts in mice indicated that higher doses produced more effective vascular shutdown, as revealed by dynamic bioluminescence imaging (BLI). In syngeneic orthotopic 4T1-luc breast and RENCA-luc kidney tumors, dynamic BLI and oxygen enhanced multispectral optoacoustic tomography (OE-MSOT) were used to compare vascular shutdown following the administration of KGP265 (7.5 mg/kg). The BLI signal and vascular oxygenation response (ΔsO2) to a gas breathing challenge were both significantly reduced within 2 h, indicating vascular disruption, which continued over 24 h. A correlative histology confirmed increased necrosis and hemorrhage. Twice-weekly doses of KGP265 caused significant growth delay in both MDA-MB-231 and 4T1 breast tumors, with no obvious systemic toxicity. A combination with carboplatin produced significantly greater tumor growth delay than carboplatin alone, though significant carboplatin-associated toxicity was observed (whole-body weight loss). KGP265 was found to be effective at low concentrations, generating long-term vascular shutdown and tumor growth delay, thus providing strong rationale for further development, particularly in combination therapies.


2021 ◽  
Author(s):  
Seung Yon Koh ◽  
Jacob T Cain ◽  
Helen Magee ◽  
Katherine A White ◽  
Mitch Rechtzigel ◽  
...  

As neurons establish extensive connections throughout the central nervous system, the transport of cargo along the microtubule network of the axon is crucial for differentiation and homeostasis. Specifically, building blocks such as membrane and cytoskeletal components, organelles, transmembrane receptors, adhesion molecules, and peptide neurotransmitters all require proper transport to the presynaptic compartment. Here, we identify a novel complex regulating vesicular endoplasmic reticulum transport in neurites, composed of CLN6: an ER-associated protein of relatively unknown function implicated in CLN6-Batten disease; CRMP2: a tubulin binding protein important in regulating neurite microtubule dynamics; and KLC4: a classic transport motor protein. We show that this 'CCK' complex allows ER-derived vesicles to migrate to the distal end of the axon, aiding in proper neurite outgrowth and arborization. In the absence of CLN6, the CCK complex does not function effectively, leading to reduced vesicular transport, stunted neurite outgrowth, and deficits in CRMP2 binding to other protein partners. Treatment with a CRMP2 modulating compound, lanthionine ketimine ester, partially restores these deficits in CLN6-deficient mouse neurons, indicating that stabilization of CRMP2 interacting partners may prove beneficial in lieu of complete restoration of the CCK complex. Taken together, these findings reveal a novel mechanism of ER-derived vesicle transport in the axon and provide new insights into therapeutic targets for neurodegenerative disease.


Sign in / Sign up

Export Citation Format

Share Document