tubulin immunofluorescence
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 2)

H-INDEX

13
(FIVE YEARS 0)

Author(s):  
MARIA KOUTALIANOU ◽  
MARIA CRISTINA BUIA ◽  
CHRISTOS KATSAROS

The present study investigates the impacts of low pH on the cell structure of the seagrasses Posidonia oceanica (L.) Delile and Cymodocea nodosa (Ucria) Ascherson. The study was applied with in situ experiments at the Castello Aragonese of Ischia (Naples, Italy), where shallow submarine vents, lowering the pH, can be used as natural laboratories. Shoots of the seagrasses were transferred from the control area (pH 8.1) to the two venting areas (pH 7.8 and 6.8) for different times. Epidermal cells of young leaves were examined using transmission electron microscopy (TEM) and tubulin immunofluorescence. After one week at pH 7.8, the cell structure of Posidonia oceanica was normal, while in Cymodocea nodosa microtubule (MT) network and cell structure were affected. In addition, in C. nodosa, ultrastructural analysis revealed a gradual degradation of the nuclei, a disorganization of the chloroplasts, and an increase in the number of mitochondria and dictyosomes. The exposure of both plants for 3 weeks at pH 6.8 resulted in the aggregation and finally in the dilation of the endoplasmic reticulum (ER) membranes. Tubulin immunofluorescence revealed that after three weeks, the MT cytoskeleton of both plants was severely affected. All these alterations can be considered as indications of an apoptotic like programmed cell death (AL-PCD) which may be executed in order to regulate stress response.



2021 ◽  
Author(s):  
Chiao-Yin Sun ◽  
Shin C. Chang ◽  
Hsiu-Po Wang ◽  
Yu-Jung Lee ◽  
Kuei-Hsiang Pan ◽  
...  

LMBD1 was previously demonstrated to regulate the endocytosis of insulin receptor on cell surface and to mediate the export of cobalamin from the lysosomes to cytosol, but little is known about its function in mitosis. In this study, interactome analysis data indicate that LMBD1 is involved in cytoskeleton regulation. Both immunoprecipitation and GST pulldown assays demonstrated association of LMBD1 with tubulin. Immunofluorescence staining also showed the colocalization of LMBD1 with microtubule in both interphase and mitotic cells. LMBD1 specifically accelerates microtubule assembly dynamics in vitro and antagonizes the microtubule-disruptive effect of vinblastine. In addition, LMBRD1-knockdown impairs mitotic spindle formation, inhibits tubulin polymerization, and diminishes the mitosis-associated tubulin acetylation. The reduced acetylation can be reversed by ectopic expression of LMBD1 protein. These results suggest that LMBD1 protein stabilizes microtubule intermediates. Furthermore, embryonic fibroblasts derived from Lmbrd1 heterozygous knockout mice showed abnormality in microtubule formation, mitosis, and cell growth. Taken together, LMBD1 plays a pivotal role in regulating microtubule assembly that is essential for the process of cell mitosis.



2014 ◽  
Vol 65 (1-2) ◽  
pp. 179-185 ◽  
Author(s):  
H. Q. Zhang ◽  
Y. Q. Li ◽  
M. Kuraś ◽  
J. Bednara ◽  
M. Cresti

In onion roots, hydroxyurea (HU) causes a gradual depression of mitotic activity which ceases after 24-36 hrs. The effect is reversible; divisions begin after several hours of recovery and after 12-14 hrs about 90% cells undergo mitosis. Mitotic activity commences in the distal region of the apical meristem, and as a wave it spreads towards the apex. In the roots treated with HU for a short time, the tubulin immunofluorescence method reveals normal arrays of microtubules (MTs). After 36 hrs of HU treatment there are only cortical and endocytoplasmatic MTs. In the recovering roots, preprophase bands (PB) mitotic spindles and phragmoplasts appear. Some PBs are split into two parallel rings. These abnormal PBs mostly occur in elongated cells. Apart from this, HU does not appear to have any significant influence on microtubular organization.



2000 ◽  
Vol 17 (5) ◽  
pp. 711-722 ◽  
Author(s):  
MARION SANGSTER ECKMILLER

In many vertebrate retinas the outer segments of rod photoreceptors have multiple incisures, that is, there are numerous indentations in the highly curved membrane forming the edge of their disks and in the plasma membrane enclosing the entire stack of disks. Immunofluorescent localization of tubulin in amphibian photoreceptors yielded a novel series of thin, parallel, fluorescent lines in rod outer segments that extended their full length and coincided with their multiple incisures. Electron-microscopic examination of amphibian retinas revealed the structures responsible for this fluorescence: longitudinally oriented microtubules were associated with incisures at heights throughout rod outer segments. These microtubules were located between the disk rims and the overlying plasma membrane, in the small cytoplasmic compartment at the mouth of incisures; the microtubules and membranes were separated from each other by distances that were uniform, as though interconnected by filaments described in other studies. Thus, in amphibian rod outer segments the incisures mark the site of a cytoskeletal system containing longitudinal microtubules distinct from those of the ciliary axoneme, linked by filaments to the adjacent membranes. This cytoskeleton is expected to be important for the normal structure, function, and renewal of rod outer segments. In amphibian cone outer segments, which do not have incisures, the only anti-tubulin immunofluorescence and the only microtubules were at the axoneme. These findings may help elucidate the diverse properties of rods and cones in many vertebrate retinas and could prove relevant for human retinal degenerations.



1999 ◽  
Vol 5 (S2) ◽  
pp. 1154-1155
Author(s):  
J. E. Tate ◽  
J. R. Palisano

Barban and chlorpropham are common carbamate herbicides that disrupt mitosis by destabilizing plant microtubules. Tubulins, protein subunits of microtubules, in plant and animal cells are highly conserved through evolution. Plant and animal cells have been shown to possess similar microtubule structural proteins, microtubule binding proteins, and organizational proteins. These similarities suggest that herbicides targeting plant microtubules might also affect animal microtubules. Previous tubulin immunofluorescence microscopic studies of HeLa cells, a human cervical cancer cell line, have shown that barban is strongly cytoskeletotoxic and chlorpropham is weakly cytoskeletotoxic. Both barban and chlorpropham have been shown to disrupt mitosis and disorganize spindle apparatus formation in numerous types of mammalian cancer cells.This investigation was undertaken to examine the effect of barban and chlorpropham on MRC-5 cells, a normal human fibroblast cell line, as well as on HeLa cells. A monoclonal antibody to α-tubulin, a microtubule specific protein, was used to probe the formation of spindle apparatuses in dividing cells.



1996 ◽  
Vol 135 (1) ◽  
pp. 201-214 ◽  
Author(s):  
Y Zhai ◽  
P J Kronebusch ◽  
P M Simon ◽  
G G Borisy

We recently developed a direct fluorescence ratio assay (Zhai, Y., and G.G. Borisy. 1994. J. Cell Sci. 107:881-890) to quantify microtubule (MT) polymer in order to determine if net MT depolymerization occurred upon anaphase onset as the spindle was disassembled. Our results showed no net decrease in polymer, indicating that the disassembly of kinetochore MTs was balanced by assembly of midbody and astral MTs. Thus, the mitosis-interphase transition occurs by a redistribution of tubulin among different classes of MTs at essentially constant polymer level. We now examine the reverse process, the interphase-mitosis transition. Specifically, we quantitated both the level of MT polymer and the dynamics of MTs during the G2/M transition using the fluorescence ratio assay and a fluorescence photoactivation approach, respectively. Prophase cells before nuclear envelope breakdown (NEB) had high levels of MT polymer (62%) similar to that previously reported for random interphase populations (68%). However, prophase cells just after NEB had significantly reduced levels (23%) which recovered as MT attachments to chromosomes were made (prometaphase, 47%; metaphase, 56%). The abrupt reorganization of MTs at NEB was corroborated by anti-tubulin immunofluorescence staining using a variety of fixation protocols. Sensitivity to nocodazole also increased at NEB. Photoactivation analyses of MT dynamics showed a similar abrupt change at NEB, basal rates of MT turnover (pre-NEB) increased post-NEB and then became slower later in mitosis. Our results indicate that the interphase-mitosis (G2/M) transition of the MT array does not occur by a simple redistribution of tubulin at constant polymer level as the mitosis-interphase (M/G1) transition. Rather, an abrupt decrease in MT polymer level and increase in MT dynamics occurs tightly correlated with NEB. A subsequent increase in MT polymer level and decrease in MT dynamics occurs correlated with chromosome attachment. These results carry implications for understanding spindle morphogenesis. They indicate that changes in MT dynamics may cause the steady-state MT polymer level in mitotic cells to be lower than in interphase. We propose that tension exerted on the kMTs may lead to their lengthening and thereby lead to an increase in the MT polymer level as chromosomes attach to the spindle.





1994 ◽  
Vol 126 (6) ◽  
pp. 1465-1473 ◽  
Author(s):  
T Horio ◽  
B R Oakley

gamma-Tubulin is a phylogenetically conserved component of microtubule-organizing centers that is essential for viability and microtubule function. To examine the functional conservation of gamma-tubulin, we have tested the ability of human gamma-tubulin to function in the fission yeast Schizosaccharomyces pombe. We have found that expression of a human gamma-tubulin cDNA restores viability and a near-normal growth rate to cells of S. pombe lacking endogenous gamma-tubulin. Immunofluorescence microscopy showed that these cells contained normal mitotic spindles and interphase microtubule arrays, and that human gamma-tubulin, like S. pombe gamma-tubulin, localized to spindle pole bodies, the fungal microtubule-organizing centers. These results demonstrate that human gamma-tubulin functions in fission yeast, and they suggest that in spite of the great morphological differences between the microtubule-organizing centers of humans and fission yeasts, gamma-tubulin is likely to perform the same tasks in both. They suggest, moreover, that the proteins that interact with gamma-tubulin, including, most obviously, microtubule-organizing center proteins, must also be conserved. We have also found that a fivefold overexpression of S. pombe gamma-tubulin causes no reduction in growth rates or alteration of microtubule organization. We hypothesize that the excess gamma-tubulin is maintained in the cytoplasm in a form incapable of nucleating microtubule assembly. Finally, we have found that expression of human gamma-tubulin or overexpression of S. pombe gamma-tubulin causes no significant alteration of resistance to the antimicrotubule agents benomyl, thiabendazole and nocodazole.



Zygote ◽  
1994 ◽  
Vol 2 (1) ◽  
pp. 87-95 ◽  
Author(s):  
Klaus Werner Wolf

SummarySpindles were isolated from deposited eggs of the Mediterranean mealmoth, Ephestia Kuehniella. Their structure and development were studied using anti-tubulin immunofluorescence. The microtubules were labelled with three different monoclonal antibodies. These were directed against β-tubulin, tyrosinated α-tubulin and acetylated α-tubulin. Significant differences in the staining behaviour were not detected with the three antibodies. An unusual mode of spindle formation was observed during the first mitotic division after fusion of the pronuclei. Several of the ensuing embryonic divisions may show the same phenomenon. Prophase of these divisions was characterised by an irregular arrangement of microtubules in the nuclear area. The microtubule mass in the nuclear area increased concomitantly with chromosome condensation. Microtubular foci, comparable to the forming asters of canonical spindles, were not detected. The formation of an orderly pattern in the microtubule mass was signalled by the appearance of minispindles apparently developing around individual chromosomes. Several minispindles subsequently aligned and formed metaphase-like entities within the nuclear area. The metaphase-like entities, in turn, aligned with one another and gave rise to a conventional bipolar metaphase spindle with small asters. The further development of the spindle was conventional. The chromosomes migrated towards the spindle poles and finally daughter nuclei formed. The anaphase and telophase spindles possessed both a prominent array of interzone microtubules and asters. The events in prophase of early embryonic mitosis of E. kuehniella may represent a rare case of chromosomeinduced spindle formation.



1993 ◽  
Vol 106 (4) ◽  
pp. 1179-1188
Author(s):  
V.I. Rodionov ◽  
V.I. Gelfand ◽  
G.G. Borisy

To study the possible involvement of kinesin-like molecules in mitosis a polyclonal antibody against the head domain of Drosophila kinesin heavy chain (HD antibody) was microinjected into PtK1 cells at the prophase-prometaphase transition. Progress of the cell through mitosis was recorded for subsequent detailed analysis. Cells injected with pre-immune IgG progressed through mitosis at rates similar to those for noninjected cells. After HD antibody injections, chromosomes failed to congress to an equatorial plane and cells failed to form a bipolar spindle. Rather, the spindle poles came together, resulting in a monopolar-like configuration with chromosomes arranged about the poles in a rosette. Sometimes the monopolar array moved to the margin of the cell in a way similar to anaphase B movement in normal cells. Antibody-injected cells progressed into the next cell cycle as evidenced by chromosome decondensation and nuclear envelope reformation. Anti-tubulin immunofluorescence confirmed the presence of a radial monopolar array of microtubules in injected cells. HD antibody stained in a punctate pattern in interphase and the spindle region in mitotic PtK1 cells. The antibody also reacted with spindle fibers of isolated mitotic CHO spindles and with kinetochores of isolated CHO chromosomes. Immunoblotting indicated that the major component recognized by the antibody is the 120 kDa kinesin heavy chain. At higher protein loads the antibody recognized also a 34 kDa polypeptide in PtK1 cell extracts, a 135 kDa polypeptide in a preparation of CHO spindles and a 300 kDa polypeptide in a preparation of CHO mitotic chromosomes. We conclude that a kinesin-like molecule is important for the formation and/or maintenance of the structure of mitotic spindle.



Sign in / Sign up

Export Citation Format

Share Document