Green synthesis of silver nanoparticles using Rhodiola imbricata and Withania somnifera root extract and their potential catalytic, antioxidant, cytotoxic and growth-promoting activities

Author(s):  
Sahil Kapoor ◽  
Hemant Sood ◽  
Shweta Saxena ◽  
Om Prakash Chaurasia
Author(s):  
Gopal Suresh ◽  
Poosali Hariharan Gunasekar ◽  
Dhanasegaran Kokila ◽  
Durai Prabhu ◽  
Devadoss Dinesh ◽  
...  

2016 ◽  
Vol 28 (3) ◽  
pp. 995-1008 ◽  
Author(s):  
A. Sankaranarayanan ◽  
Govindarasu Munivel ◽  
Gopalu Karunakaran ◽  
Shine Kadaikunnan ◽  
Naiyf S. Alharbi ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2383
Author(s):  
Majid Sharifi-Rad ◽  
Pawel Pohl ◽  
Francesco Epifano ◽  
José M. Álvarez-Suarez

Today, the green synthesis of metal nanoparticles is a promising strategy in material science and nanotechnology. In this research, silver nanoparticles (AgNPs) were synthesized through the high-efficient, cost-effective green and facile process, using the Astragalus tribuloides Delile. root extract as a bioreduction and capping agent at room temperature. UV–Vis spectroscopy was applied for the investigation of the reaction proceedings. To characterize the greenly synthesized AgNPs, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), and transmission electron microscopy (TEM) analyses were utilized. In addition, the total phenolics and flavonoids contents, antioxidant, antibacterial, and anti-inflammatory activities of the greenly synthesized AgNPs and the A. tribuloides root extract were evaluated. The results indicated that the AgNPs had spherical morphology and crystalline structure with the average size of 34.2 ± 8.0 nm. The total phenolics and flavonoids contents of the greenly synthesized AgNPs were lower than those for the A. tribuloides root extract. The resultant AgNPs exhibited the appropriate antioxidant activity (64%) as compared to that for the A. tribuloides root extract (47%). The antibacterial test approved the higher bactericidal activity of the resulting AgNPs on the Gram-positive and Gram-negative bacteria in comparison to the A. tribuloides root extract. Considering the anti-inflammatory activity, the greenly synthesized AgNPs showed a stranger effect than the A. tribuloides root extract (82% versus 69% at 500 μg/mL). Generally, the AgNPs that were fabricated by using the A. tribuloides root extract had appropriate antioxidant, antibacterial, and anti-inflammatory activities and, therefore, can be considered as a promising candidate for various biomedical applications.


2018 ◽  
Vol 18 (12) ◽  
pp. 8386-8391 ◽  
Author(s):  
Muhammad Riaz ◽  
Muhammad Altaf ◽  
Muhammad Qayyum Khan ◽  
Saima Manzoor ◽  
Muhammad Azhar Shekheli ◽  
...  

Green syntheses of nanoparticles using plant materials are of tremendous scope. Here we report advantageous green synthesis for silver nanoparticles (AgNPs) using aqueous-root extract of Jurinea dolomiaea and AgNO3. Color change of solution and UV-Vis absorption at 444 nm indicated the formation of AgNPs. XRD confirmed their face centered cubic structure (fcc) with average particle size of 24.58 nm. SEM analysis showed their spherical, cubic and triangular structures. FT-IR indicated the presence of functional groups of reducing and stabilizing phytochemicals. Methanol-root extract of J. dolomiaea revealed high flavonoid (445 mg RE/g) and phenolic contents (92 mg GAE/g). Methanol-extract showed high antioxidant potency (IC50 = 0.494 μg/mL), rationally due to its high phenolic and flavonoid contents. These AgNPs showed the highest and equal antimicrobial activities against Escherichia coli and Pseudomonas aeruginosa (Inhibition zone 11.0 mm) whereas, methanol-roots extract showed equal and intermediate activities (Inhibition zone 8.0 mm) against both pathogens but aqueous extract showed poor activities (Inhibition zone 6.0 mm) against these both pathogens. AgNPs are playing a major role in the field of nanotechnology and nanomedicine due to their antimicrobial and drug delivery efficacy as well as reasonable tolerance in human biology.


Sign in / Sign up

Export Citation Format

Share Document