scholarly journals Green Synthesis of Silver Nanoparticles Using Astragalus tribuloides Delile. Root Extract: Characterization, Antioxidant, Antibacterial, and Anti-Inflammatory Activities

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2383
Author(s):  
Majid Sharifi-Rad ◽  
Pawel Pohl ◽  
Francesco Epifano ◽  
José M. Álvarez-Suarez

Today, the green synthesis of metal nanoparticles is a promising strategy in material science and nanotechnology. In this research, silver nanoparticles (AgNPs) were synthesized through the high-efficient, cost-effective green and facile process, using the Astragalus tribuloides Delile. root extract as a bioreduction and capping agent at room temperature. UV–Vis spectroscopy was applied for the investigation of the reaction proceedings. To characterize the greenly synthesized AgNPs, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), and transmission electron microscopy (TEM) analyses were utilized. In addition, the total phenolics and flavonoids contents, antioxidant, antibacterial, and anti-inflammatory activities of the greenly synthesized AgNPs and the A. tribuloides root extract were evaluated. The results indicated that the AgNPs had spherical morphology and crystalline structure with the average size of 34.2 ± 8.0 nm. The total phenolics and flavonoids contents of the greenly synthesized AgNPs were lower than those for the A. tribuloides root extract. The resultant AgNPs exhibited the appropriate antioxidant activity (64%) as compared to that for the A. tribuloides root extract (47%). The antibacterial test approved the higher bactericidal activity of the resulting AgNPs on the Gram-positive and Gram-negative bacteria in comparison to the A. tribuloides root extract. Considering the anti-inflammatory activity, the greenly synthesized AgNPs showed a stranger effect than the A. tribuloides root extract (82% versus 69% at 500 μg/mL). Generally, the AgNPs that were fabricated by using the A. tribuloides root extract had appropriate antioxidant, antibacterial, and anti-inflammatory activities and, therefore, can be considered as a promising candidate for various biomedical applications.

2021 ◽  
Author(s):  
Tanmoy Dutta ◽  
Swapan Kumar Chowdhury ◽  
Narendra Nath Ghosh ◽  
Mahuya Das ◽  
Asoke P. Chattopadhyay ◽  
...  

Abstract The present study reports a novel, one-pot, cost-effective, green synthesis route of silver nanoparticles (AgNPs) from the fruit extract of Glycosmis pentaphylla (FGP). The UV–vis spectroscopy (UV-Vis), dynamic light scattering (DLS) and transmission electron microscopy (TEM) studies confirmed that the synthesis produces stable, monodispersed AgNPs with an average size of 17 nm. Theoretical simulation using density functional theory (DFT) established that among the different compounds of FGP, arborine is mainly responsible for the stabilization of AgNPs with a binding energy of 58.45 kJ/mol. Synthesized AgNPs showed strong antifungal and antibacterial activity. The synergistic study of AgNPs with fungicide Bavistin and antibiotic Streptomycin produced remarkable morphological abnormalities of A. alternata as observed under the light microscope. Hence, the AgNPs synthesis approach is a progressive step towards various applications to soon control crop and human pathogens.


Author(s):  
Utkarsh Jain ◽  
CS Pundir ◽  
Shaivya Gupta ◽  
Nidhi Chauhan

Recent advancements in nanotechnology, for the biosynthesis of metal nanoparticles through enormous techniques, showed multidimensional developments. One among many facets of nanotechnology is to procure and adopt new advancements for green technology over chemical reduction synthesis. This adaptation for acquiring green nanotechnology leads us to a new dimension of nanobiotechnology. In order to imply one such efforts, in this study the emphasis is being laid on the synthesis of MgO nanoparticles using green technology and eliminating chemical reduction methods. Different characterization techniques such as UV–Vis spectroscopy, transmission electron microscopy, and dynamic light scattering were used to carry out the experiments. The average size of MgO nanoparticles were obtained in the range of 85–95 nm, when synthesized by various sources. The extracts of plants were capable of producing MgO nanoparticles efficiently and exhibited good results during cyclic voltammetry and electrochemical impedance spectroscopy study. The electrode modified with MgO nanoparticles (plant extract) showed good stability (90 days) and high conductivity. This study reports cost-effective and environment-friendly method for synthesis of MgO nanoparticles using plant extracts. The process is rapid, simple, and convenient and can be used as an alternative to chemical method.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1777 ◽  
Author(s):  
Md. Mahiuddin ◽  
Prianka Saha ◽  
Bungo Ochiai

A green synthesis of silver nanoparticles (AgNPs) was conducted using the stem extract of Piper chaba, which is a plant abundantly growing in South and Southeast Asia. The synthesis was carried out at different reaction conditions, i.e., reaction temperature, concentrations of the extract and silver nitrate, reaction time, and pH. The synthesized AgNPs were characterized by visual observation, ultraviolet–visible (UV-vis) spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), energy dispersive x-ray (EDX), and Fourier transform infrared (FTIR) spectroscopy. The characterization results revealed that AgNPs were uniformly dispersed and exhibited a moderate size distribution. They were mostly spherical crystals with face-centered cubic structures and an average size of 19 nm. The FTIR spectroscopy and DLS analysis indicated that the phytochemicals capping the surface of AgNPs stabilize the dispersion through anionic repulsion. The synthesized AgNPs effectively catalyzed the reduction of 4-nitrophenol (4-NP) and degradation of methylene blue (MB) in the presence of sodium borohydride.


2020 ◽  
Vol 7 (7) ◽  
pp. 200065 ◽  
Author(s):  
Siti Nur Aishah Mat Yusuf ◽  
Che Nurul Azieyan Che Mood ◽  
Nor Hazwani Ahmad ◽  
Doblin Sandai ◽  
Chee Keong Lee ◽  
...  

Background : Silver nanoparticles (AgNPs) are widely used in food industries, biomedical, dentistry, catalysis, diagnostic biological probes and sensors. The use of plant extract for AgNPs synthesis eliminates the process of maintaining cell culture and the process could be scaled up under a non-aseptic environment. The purpose of this study is to determine the classes of phytochemicals, to biosynthesize and characterize the AgNPs using Clinacanthus nutans leaf and stem extracts. In this study, AgNPs were synthesized from the aqueous extracts of C. nutans leaves and stems through a non-toxic, cost-effective and eco-friendly method. Results : The formation of AgNPs was confirmed by UV-Vis spectroscopy, and the size of AgNP-L (leaf) and AgNP-S (stem) were 114.7 and 129.9 nm, respectively. Transmission electron microscopy (TEM) analysis showed spherical nanoparticles with AgNP-L and AgNP-S ranging from 10 to 300 nm and 10 to 180 nm, with average of 101.18 and 75.38 nm, respectively. The zeta potentials of AgNP-L and AgNP-S were recorded at −42.8 and −43.9 mV. X-ray diffraction analysis matched the face-centred cubic structure of silver and was capped with bioactive compounds. Fourier transform infrared spectrophotometer analysis revealed the presence of few functional groups of phenolic and flavonoid compounds. These functional groups act as reducing agents in AgNPs synthesis. Conclusion : These results showed that the biogenically synthesized nanoparticles reduced silver ions to silver nanoparticles in aqueous condition and the AgNPs formed were stable and less toxic.


2015 ◽  
Vol 4 (2) ◽  
Author(s):  
Vladimir Popov ◽  
Ivaylo Hinkov ◽  
Svetlomir Diankov ◽  
Maria Karsheva ◽  
Yordan Handzhiyski

AbstractThe antimicrobial activity of nanoparticles (NPs) depends of the surface area in contact with microorganisms. The large surface area of the nanoparticles enhances their interaction with the microbes. In this work, a green, simple, rapid, and efficient ultrasound-assisted reduction method for silver nanoparticles (AgNP) synthesis is presented. For the synthesis, an aqueous solution of silver nitrate, ethanol, and ammonia was used. The adopted method can be easily implemented for any kind of scientific or industrial application due to its cost-effective nature. The effect of sonication time on the nanoparticle formation was investigated. Silver nanoparticles were analyzed through transmission electron microscopy and UV-vis spectroscopy. Antimicrobial additives can be incorporated in mass in different matrixes (polymeric or cellulosic), which is a convenient methodology to achieve antimicrobial activity. In this work, silver nanoparticles were incorporated in cellulose using an ultrasonic bath technique. The most important aspect of cellulose containing silver nanoparticles prepared by this method is its high antimicrobial efficiency. The microbiological study was carried out by a standard agar technique. The analysis showed that cellulose with incorporated silver nanoparticles exhibited strong antimicrobial activity against


2011 ◽  
Vol 415-417 ◽  
pp. 487-490 ◽  
Author(s):  
Jia Li Ding ◽  
Wen Wu

Green synthesis of silver nanoparticles (AgNPs) using the silk sericin (SS) solution by in situ reduction at room temperature is reported. The effect of pH on the reduction reaction is studied by UV-Vis spectroscopy. The structure of the sericin-based silver nanoparticles is characterized by TEM. According to the TEM images, the average size of the silver nanoparticles is about 16 nm. The silver nanoparticles are highly dispersed and stable in silk sericin solution for monthes.


2018 ◽  
Vol 7 (3) ◽  
pp. 1570
Author(s):  
Nguyen Phung Anh ◽  
Truong Thi Ai Mi ◽  
Duong Huynh Thanh Linh ◽  
Nguyen Thi Thuy Van ◽  
Hoang Tien Cuong ◽  
...  

A rapid way of synthesizing silver nanoparticles (AgNPs) by treating Ag+ ions with a green Fortunella Japonica (F.J.) extract as a combined reducing and stabilizing agent was investigated. The reaction solutions were monitored using UV-Vis spectroscopy, the size and shape of crystals were determined by scanning electron microscopy and transmission electron microscopy, the crystalline phases of AgNPs were presented by X–ray diffraction, and the relation of nanoparticles with Fortunella Japonica extract was confirmed using fourier transform infrared spectroscopy. The results indicated that no formation of AgNPs had taken place in the dark during 24 hours at room temperature and 40 oC. Meanwhile, it was found that the rate of AgNPs formation increased rapidly under the sunlight. The effects of the synthesis factors on the AgNPs formation were investigated. The suitable conditions for the synthesis of AgNPs using F.J. extract were determined as follows: F.J. extract was mixed with AgNO3 1.75 mM solution with the volume ratio of 3.5 AgNO3 solution/1.5 F.J. Extract, stirred 300 rpm for 150 minutes at 40 oC under sunlight illumination. At these conditions, AgNPs showed high crystalline structure with the average size of 15.9 nm. The antibacterial activity of silver nanoparticles was determined by agar well diffusion method against E. coli and B. subtilis bacteria. The green synthesized AgNPs performed high antibacterial activity against both bacteria.  


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Gaurav Sharma ◽  
Nakuleshwar Dut Jasuja ◽  
Manoj Kumar ◽  
Mohammad Irfan Ali

The present study explores biological synthesis of silver nanoparticles (AgNPs) using the cell-free extract ofSpirulina platensis. Biosynthesised AgNPs were characterised by UV-Vis spectroscopy, SEM, TEM, and FTIR analysis and finally evaluated for antibacterial activity. Extracellular synthesis using aqueous extract ofS. platensisshowed the formation of well scattered, highly stable, spherical AgNPs with an average size of 30–50 nm. The size and morphology of the nanoparticles were confirmed by SEM and TEM analysis. FTIR and UV-Vis spectra showed that biomolecules, proteins and peptides, are mainly responsible for the formation and stabilisation of AgNPs. Furthermore, the synthesised nanoparticles exhibited high antibacterial activity against pathogenic Gram-negative, that is,Escherichia coli, MTCC-9721;Proteus vulgaris, MTCC-7299;Klebsiella pneumoniae, MTCC-9751, and Gram-positive, that is,Staphylococcus aureus, MTCC-9542;S. epidermidis, MTCC-2639;Bacillus cereus, MTCC-9017, bacteria. The AgNPs had shown maximum zone of inhibition (ZOI) that is31.3±1.11inP. vulgaris. Use of such a microalgal system provides a simple, cost-effective alternative template for the biosynthesis of nanomaterials of silver in a large scale that could be of great use in biomedical applications.


Nanomaterials ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 627 ◽  
Author(s):  
Bianca Moldovan ◽  
Vladislav Sincari ◽  
Maria Perde-Schrepler ◽  
Luminita David

The present study reports for the first time the efficacy of bioactive compounds from Ligustrum ovalifolium L. fruit extract as reducing and capping agents of silver nanoparticles (AgNPs), developing a green, zero energetic, cost effective and simple synthesis method of AgNPs. The obtained nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), confirming that nanoparticles were crystalline in nature, spherical in shape, with an average size of 7 nm. The FTIR spectroscopy analysis demonstrated that the AgNPs were capped and stabilized by bioactive molecules from the fruit extract. The cytotoxicity of the biosynthesized AgNPs was in vitro evaluated against ovarian carcinoma cells and there were found to be effective at low concentration levels.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Manal A. Awad ◽  
W. K. Mekhamer ◽  
Nada M. Merghani ◽  
Awatif A. Hendi ◽  
Khalid M. O. Ortashi ◽  
...  

A novel, nontoxic, simple, cost-effective and ecofriendly technique was used to synthesize green silver nanoparticles (AgNPs). The AgNPs were synthesized using orange peel extract as a reducing agent for silver nitrate salt (AgNO3). The particle size distribution of AgNPs was determined by Dynamic Light Scattering (DLS). The average size of silver nanoparticles was 98.43 nm. The stable dispersion of silver nanoparticles was added slowly to polystyrene solution in toluene maintaining the temperature at 70°C. The AgNPs/polystyrene (PS) nanocomposite solution was cast in a petri dish. The silver nanoparticles encapsulated within polymer chains were characterized by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) equipped with Energy Dispersive Spectroscopy (EDS) in addition to Transmission Electron Microscopy (TEM). The green AgNPs/PS nanocomposite film exhibited antimicrobial activity against Gram-negative bacteriaEscherichia coli, Klebsiella pneumoniae and Salmonella, and Gram-positive bacteriaStaphylococcus aureus. Thus, the key findings of the work include the use of a safe and simple AgNPs/PS nanocomposite which had a marked antibacterial activity which has a potential application in food packaging.


Sign in / Sign up

Export Citation Format

Share Document