Generation of small bubbles and small bubble-liquid mass transfer in airlift reactors containing highly viscous liquids

1999 ◽  
Vol 21 (1) ◽  
pp. 89 ◽  
Author(s):  
B. Kawalec-Pietrenko ◽  
W. Pietrenko
Author(s):  
Christophe E Wylock ◽  
Pierre Colinet ◽  
Thierry Cartage ◽  
Benoît Haut

This work deals with the study of the gas-liquid mass transfer, coupled with chemical reactions. The case of carbonic gas absorption in a brine of sodium carbonate and bicarbonate is investigated. It is performed in collaboration with Solvay SA. The aim of this work is to get a better understanding of this phenomenon. It would permit an optimization of the refined sodium bicarbonate production process. The basis of developed mathematical models is presented. The CO2 absorption is coupled with several chemical reactions taking place in the liquid phase. A mathematical modelling of this coupling is first developed. The equations of the model are solved numerically, using COMSOL Multiphysics. To model the bubble-liquid mass transfer of CO2, this diffusion-reaction model is completed by a representation of the liquid phase flow around the bubble. In order to validate experimentally each scale of modelling, two experimental devices are proposed.


RSC Advances ◽  
2016 ◽  
Vol 6 (111) ◽  
pp. 109978-109982 ◽  
Author(s):  
Young-Kee Kim ◽  
Sung-Yeob Lee ◽  
Byung-Keun Oh

In an enzyme process using a gas substrate, the enhanced gas liquid mass transfer rate of the gas substrate by methyl-functionalized mesoporous nanoparticles could improve the productivity.


Sign in / Sign up

Export Citation Format

Share Document