scholarly journals Tight Bounds on the Expected Runtime of a Standard Steady State Genetic Algorithm

Algorithmica ◽  
2021 ◽  
Author(s):  
Pietro S. Oliveto ◽  
Dirk Sudholt ◽  
Carsten Witt

AbstractRecent progress in the runtime analysis of evolutionary algorithms (EAs) has allowed the derivation of upper bounds on the expected runtime of standard steady-state genetic algorithms (GAs). These upper bounds have shown speed-ups of the GAs using crossover and mutation over the same algorithms that only use mutation operators (i.e., steady-state EAs) both for standard unimodal (i.e., OneMax) and multimodal (i.e., Jump) benchmark functions. The bounds suggest that populations are beneficial to the GA as well as higher mutation rates than the default 1/n rate. However, making rigorous claims was not possible because matching lower bounds were not available. Proving lower bounds on crossover-based EAs is a notoriously difficult task as it is hard to capture the progress that a diverse population can make. We use a potential function approach to prove a tight lower bound on the expected runtime of the (2+1) GA for OneMax for all mutation rates c/n with $$c < 1.422$$ c < 1.422 . This provides the last piece of the puzzle that completes the proof that larger population sizes improve the performance of the standard steady-state GA for OneMax for various mutation rates, and it proves that the optimal mutation rate for the (2+1) GA on OneMax is $$(\sqrt{97}-5)/(4n) \approx 1.2122/n$$ ( 97 - 5 ) / ( 4 n ) ≈ 1.2122 / n .

2014 ◽  
Vol 716-717 ◽  
pp. 391-394
Author(s):  
Li Mei Guo ◽  
Ai Min Xiao

in architectural decoration process, pressure-bearing capacity test is the foundation of design, and is very important. To this end, a pressure-bearing capacity test method in architectural decoration design is proposed based on improved genetic algorithm. The selection, crossover and mutation operators in genetic algorithm are improved respectively. Using its fast convergence characteristics eliminate the pressure movement in the calculation process. The abnormal area of pressure-bearing existed in buildings which can ensure to be tested is added, to obtain accurate distribution information of the abnormal area of pressure-bearing. Simulation results show that the improved genetic algorithm has good convergence, can accurately test the pressure-bearing capacity in architectural decoration.


Information ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 390 ◽  
Author(s):  
Ahmad Hassanat ◽  
Khalid Almohammadi ◽  
Esra’a Alkafaween ◽  
Eman Abunawas ◽  
Awni Hammouri ◽  
...  

Genetic algorithm (GA) is an artificial intelligence search method that uses the process of evolution and natural selection theory and is under the umbrella of evolutionary computing algorithm. It is an efficient tool for solving optimization problems. Integration among (GA) parameters is vital for successful (GA) search. Such parameters include mutation and crossover rates in addition to population that are important issues in (GA). However, each operator of GA has a special and different influence. The impact of these factors is influenced by their probabilities; it is difficult to predefine specific ratios for each parameter, particularly, mutation and crossover operators. This paper reviews various methods for choosing mutation and crossover ratios in GAs. Next, we define new deterministic control approaches for crossover and mutation rates, namely Dynamic Decreasing of high mutation ratio/dynamic increasing of low crossover ratio (DHM/ILC), and Dynamic Increasing of Low Mutation/Dynamic Decreasing of High Crossover (ILM/DHC). The dynamic nature of the proposed methods allows the ratios of both crossover and mutation operators to be changed linearly during the search progress, where (DHM/ILC) starts with 100% ratio for mutations, and 0% for crossovers. Both mutation and crossover ratios start to decrease and increase, respectively. By the end of the search process, the ratios will be 0% for mutations and 100% for crossovers. (ILM/DHC) worked the same but the other way around. The proposed approach was compared with two parameters tuning methods (predefined), namely fifty-fifty crossover/mutation ratios, and the most common approach that uses static ratios such as (0.03) mutation rates and (0.9) crossover rates. The experiments were conducted on ten Traveling Salesman Problems (TSP). The experiments showed the effectiveness of the proposed (DHM/ILC) when dealing with small population size, while the proposed (ILM/DHC) was found to be more effective when using large population size. In fact, both proposed dynamic methods outperformed the predefined methods compared in most cases tested.


2020 ◽  
Vol 10 (6) ◽  
pp. 57
Author(s):  
Tanweer Alam ◽  
Shamimul Qamar ◽  
Amit Dixit ◽  
Mohamed Benaida

Nowadays genetic algorithm (GA) is greatly used in engineering pedagogy as adaptive technology to learn and solve complex problems and issues. It is a meta-heuristic approach that is used to solve hybrid computation challenges. GA utilizes selection, crossover, and mutation operators to effectively manage the searching system strategy. This algorithm is derived from natural selection and genetics concepts. GA is an intelligent use of random search supported with historical data to contribute the search in an area of the improved outcome within a coverage framework. Such algorithms are widely used for maintaining high-quality reactions to optimize issues and problems investigation. These techniques are recognized to be somewhat of a statistical investigation process to search for a suitable solution or prevent an accurate strategy for challenges in optimization or searches. These techniques have been produced from natural selection or genetics principles. For random testing, historical information is provided with intelligent enslavement to continue moving the search out from the area of improved features for processing of the outcomes. It is a category of heuristics of evolutionary history using behavioral science-influenced methods like an annuity, gene, preference, or combination (sometimes refers to as hybridization). This method seemed to be a valuable tool to find solutions for problems optimization. In this paper, the author has explored the GAs, its role in engineering pedagogies, and the emerging areas where it is using, and its implementation.


Author(s):  
Santosh Tiwari ◽  
Joshua Summers ◽  
Georges Fadel

A novel approach using a genetic algorithm is presented for extracting globally satisfycing (Pareto optimal) solutions from a morphological chart where the evaluation and combination of “means to sub-functions” is modeled as a combinatorial multi-objective optimization problem. A fast and robust genetic algorithm is developed to solve the resulting optimization problem. Customized crossover and mutation operators specifically tailored to solve the combinatorial optimization problem are discussed. A proof-of-concept simulation on a practical design problem is presented. The described genetic algorithm incorporates features to prevent redundant evaluation of identical solutions and a method for handling of the compatibility matrix (feasible/infeasible combinations) and addressing desirable/undesirable combinations. The proposed approach is limited by its reliance on the quantifiable metrics for evaluating the objectives and the existence of a mathematical representation of the combined solutions. The optimization framework is designed to be a scalable and flexible procedure which can be easily modified to accommodate a wide variety of design methods that are based on the morphological chart.


2011 ◽  
Vol 347-353 ◽  
pp. 1458-1461
Author(s):  
Hong Fan ◽  
Yi Xiong Jin

Improved genetic algorithm for solving the transmission network expansion planning is presented in the paper. The module which considered the investment costs of new transmission facilities. It is a large integer linear optimization problem. In this work we present improved genetic algorithm to find the solution of excellent quality. This method adopts integer parameter encoded style and has nonlinear crossover and mutation operators, owns strong global search capability. Tests are carried out using a Brazilian Southern System and the results show the good performance.


2013 ◽  
Vol 753-755 ◽  
pp. 2925-2929
Author(s):  
Xiao Chun Zhu ◽  
Jian Feng Zhao ◽  
Mu Lan Wang

This paper studies the scheduling problem of Hybrid Flow Shop (HFS) under the objective of minimizing makespan. The corresponding scheduling simulation system is developed in details, which employed a new encoding method so as to guarantee the validity of chromosomes and the convenience of calculation. The corresponding crossover and mutation operators are proposed for optimum sequencing. The simulation results show that the adaptive Genetic Algorithm (GA) is an effective and efficient method for solving HFS Problems.


2021 ◽  
Vol 23 (4) ◽  
pp. 659-669
Author(s):  
Paweł Gołda ◽  
Tomasz Zawisza ◽  
Mariusz Izdebski

The purpose of this paper is to evaluate the efficiency of airport processes using simulation tools. A critical review of selected scientific studies relating to the performance of airport processes with respect to reliability, particularly within the apron, has been undertaken. The developed decision-making model evaluates the efficiency of airport processes in terms of minimizing penalties associated with aircraft landing before or after the scheduled landing time. The model takes into account, among other things, aircraft take-offs and landings and separation times between successive aircraft. In order to be able to verify the correctness of the decision-making model, a simulation tool was developed to support decision making in the implementation of airport operations based on a genetic algorithm. A novel development of the structure of a genetic algorithm as well as crossover and mutation operators adapted to the determination of aircraft movement routes on the apron is presented. The developed simulation tool was verified on real input data.


2012 ◽  
Vol 557-559 ◽  
pp. 2229-2233
Author(s):  
Bing Gang Wang

This paper is concerned about the scheduling problems in flexible production lines with no intermediate buffers. The optimization objective is to minimizing the makespan. The mathematical models are presented. Since the problem is NP-hard, a hybrid algorithm, based on genetic algorithm and tabu search, is put forward for solving the models. In this algorithm, the method of generating the initial population is proposed and the crossover and mutation operators, tabu list, and aspiration rule are newly designed. The performance of the hybrid algorithm is compared with that of the traditional genetic algorithm. The computational results show that satisfactory solutions can be obtained by the hybrid algorithm and it performs better than the genetic algorithm in terms of solution quality.


2014 ◽  
Vol 1046 ◽  
pp. 371-374
Author(s):  
Bing Fan ◽  
Ying Zeng ◽  
Liang Rui Tang

Clonal operator which can reserve the elites is introduced in the selection step of traditional genetic algorithm (GA) to accelerate the local convergence speed. Chaotic search which is randomness and ergodicity is applied in crossover and mutation operators to avoid the algorithm stopping at a local extreme value. The above hybrid GA is called chaotic clonal GA (CCGA) which can overcome the instability of optimizing processes and results in traditional GA by the certainty of chaotic trajectory. The CCGA is applied to solve the problem of load balance routing in differentiated service networks. The routing optimization model is created and the optimizing objective is load balance and small path length. The simulation results show that CCGA has fast convergence speed and high stability. It can meet the requirements of important business routings.


Sign in / Sign up

Export Citation Format

Share Document