scholarly journals The adapted augmented Lagrangian method: a new method for the resolution of the mechanical frictional contact problem

2011 ◽  
Vol 49 (2) ◽  
pp. 259-275 ◽  
Author(s):  
Philippe Bussetta ◽  
Daniel Marceau ◽  
Jean-Philippe Ponthot
2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Hao Zhang ◽  
Qin Ni

We propose a new method for equality constrained optimization based on augmented Lagrangian method. We construct an unconstrained subproblem by adding an adaptive quadratic term to the quadratic model of augmented Lagrangian function. In each iteration, we solve this unconstrained subproblem to obtain the trial step. The main feature of this work is that the subproblem can be more easily solved. Numerical results show that this method is effective.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Othmane Baiz ◽  
Hicham Benaissa ◽  
Zakaria Faiz ◽  
Driss El Moutawakil

AbstractIn the present paper, we study inverse problems for a class of nonlinear hemivariational inequalities. We prove the existence and uniqueness of a solution to inverse problems. Finally, we introduce an inverse problem for an electro-elastic frictional contact problem to illustrate our results.


2020 ◽  
Vol 14 ◽  
pp. 174830262097353
Author(s):  
Noppadol Chumchob ◽  
Ke Chen

Variational methods for image registration basically involve a regularizer to ensure that the resulting well-posed problem admits a solution. Different choices of regularizers lead to different deformations. On one hand, the conventional regularizers, such as the elastic, diffusion and curvature regularizers, are able to generate globally smooth deformations and generally useful for many applications. On the other hand, these regularizers become poor in some applications where discontinuities or steep gradients in the deformations are required. As is well-known, the total (TV) variation regularizer is more appropriate to preserve discontinuities of the deformations. However, it is difficult in developing an efficient numerical method to ensure that numerical solutions satisfy this requirement because of the non-differentiability and non-linearity of the TV regularizer. In this work we focus on computational challenges arising in approximately solving TV-based image registration model. Motivated by many efficient numerical algorithms in image restoration, we propose to use augmented Lagrangian method (ALM). At each iteration, the computation of our ALM requires to solve two subproblems. On one hand for the first subproblem, it is impossible to obtain exact solution. On the other hand for the second subproblem, it has a closed-form solution. To this end, we propose an efficient nonlinear multigrid (NMG) method to obtain an approximate solution to the first subproblem. Numerical results on real medical images not only confirm that our proposed ALM is more computationally efficient than some existing methods, but also that the proposed ALM delivers the accurate registration results with the desired property of the constructed deformations in a reasonable number of iterations.


Sign in / Sign up

Export Citation Format

Share Document