Variable-node plate and shell elements with assumed natural strain and smoothed integration methods for nonmatching meshes

2012 ◽  
Vol 51 (6) ◽  
pp. 927-948 ◽  
Author(s):  
Dongwoo Sohn ◽  
Seyoung Im
2012 ◽  
Vol 504-506 ◽  
pp. 913-918 ◽  
Author(s):  
Carlos Felipe Guzmán ◽  
Amine Ben Bettaieb ◽  
José Ilídio Velosa de Sena ◽  
Ricardo J. Alves de Sousa ◽  
Anne Marie Habraken ◽  
...  

Single Point Incremental Forming (SPIF) is a recent sheet forming process which can give a symmetrical or asymmetrical shape by using a small tool. Without the need of dies, the SPIF is capable to deal with rapid prototyping and small batch productions at low cost. Extensive research from both experimental and numerical sides has been carried out in the last years. Recent developments in the finite element simulations for sheet metal forming have allowed new modeling techniques, such as the Solid Shell elements, which combine the main features of shell hypothesis with a solid-brick element. In this article, two recently developed elements -SSH3D element [1, 2] and RESS3 element [3]- implemented in Lagamine (finite element code developed by the ArGEnCo department of the University of Liège) are explained and evaluated using the SPIF line test. To avoid locking problems, the well-known Enhanced Assumed Strain (EAS) and Assumed Natural Strain (ANS) techniques are used. The influence of the different EAS and ANS parameters are analized comparing the predicted tool forces and the shape of a transversal cut, at the end of the process. The results show a strong influence of the EAS in the forces prediction, proving that a correct choice is fundamental for an accurate simulation of the SPIF using Solid Shell elements.


2007 ◽  
Vol 75 (2) ◽  
pp. 156-187 ◽  
Author(s):  
Rui P. R. Cardoso ◽  
Jeong Whan Yoon ◽  
M. Mahardika ◽  
S. Choudhry ◽  
R. J. Alves de Sousa ◽  
...  

Author(s):  
K Dufva ◽  
A A Shabana

The absolute nodal coordinate formulation can be used in multibody system applications where the rotation and deformation within the finite element are large and where there is a need to account for geometrical non-linearities. In this formulation, the gradients of the global positions are used as nodal coordinates and no rotations are interpolated over the finite element. For thin plate and shell elements, the plane stress conditions can be applied and only gradients obtained by differentiation with respect to the element mid-surface spatial parameters need to be defined. This automatically reduces the number of element degrees of freedoms, eliminates the high frequencies due to the oscillations of some gradient components along the element thickness, and as a result makes the plate element computationally more efficient. In this paper, the performance of a thin plate element based on the absolute nodal coordinate formulation is investigated. The lower dimension plate element used in this investigation allows for an arbitrary rigid body displacement and large deformation within the element. The element leads to a constant mass matrix and zero Coriolis and centrifugal forces. The performance of the element is compared with other plate elements previously developed using the absolute nodal coordinate formulation. It is shown that the finite element used in this investigation is much more efficient when compared with previously proposed elements in the case of thin structures. Numerical examples are presented in order to demonstrate the use of the formulation developed in this paper and the computational advantages gained from using the thin plate element. The thin plate element examined in this study can be efficiently used in many applications including modelling of paper materials, belt drives, rotor dynamics, and tyres.


Sign in / Sign up

Export Citation Format

Share Document