Analysis of Thin Plate Structures Using the Absolute Nodal Coordinate Formulation

Author(s):  
K Dufva ◽  
A A Shabana

The absolute nodal coordinate formulation can be used in multibody system applications where the rotation and deformation within the finite element are large and where there is a need to account for geometrical non-linearities. In this formulation, the gradients of the global positions are used as nodal coordinates and no rotations are interpolated over the finite element. For thin plate and shell elements, the plane stress conditions can be applied and only gradients obtained by differentiation with respect to the element mid-surface spatial parameters need to be defined. This automatically reduces the number of element degrees of freedoms, eliminates the high frequencies due to the oscillations of some gradient components along the element thickness, and as a result makes the plate element computationally more efficient. In this paper, the performance of a thin plate element based on the absolute nodal coordinate formulation is investigated. The lower dimension plate element used in this investigation allows for an arbitrary rigid body displacement and large deformation within the element. The element leads to a constant mass matrix and zero Coriolis and centrifugal forces. The performance of the element is compared with other plate elements previously developed using the absolute nodal coordinate formulation. It is shown that the finite element used in this investigation is much more efficient when compared with previously proposed elements in the case of thin structures. Numerical examples are presented in order to demonstrate the use of the formulation developed in this paper and the computational advantages gained from using the thin plate element. The thin plate element examined in this study can be efficiently used in many applications including modelling of paper materials, belt drives, rotor dynamics, and tyres.

Author(s):  
Aki M. Mikkola ◽  
Ahmed A. Shabana

Abstract In this investigation, a method for the finite rotation and large deformation analysis of plates is presented. The method, which is based on the absolute nodal coordinate formulation, leads to a plate element capable of representing exact rigid body motion. In this method, continuity conditions on all the displacement gradients are imposed. Therefore, non-smoothness of the plate mid-surface at the nodal points is avoided. By developing such a plate element, a constant mass matrix is obtained, and as a consequence, the centrifugal and Coriolis forces are equal to zero. Generalization of the formulation to the case of shell elements is discussed. Numerical results are presented in order to demonstrate the use of the proposed method in the large rotation and deformation analysis of plates and shells.


Author(s):  
Alexander Olshevskiy ◽  
Oleg Dmitrochenko ◽  
Chang-Wan Kim

The present paper contributes to the field of flexible multibody systems dynamics. Two new solid finite elements employing the absolute nodal coordinate formulation are presented. In this formulation, the equations of motion contain a constant mass matrix and a vector of generalized gravity forces, but the vector of elastic forces is highly nonlinear. The proposed solid eight node brick element with 96 degrees of freedom uses translations of nodes and finite slopes as sets of nodal coordinates. The displacement field is interpolated using incomplete cubic polynomials providing the absence of shear locking effect. The use of finite slopes describes the deformed shape of the finite element more exactly and, therefore, minimizes the number of finite elements required for accurate simulations. Accuracy and convergence of the finite element is demonstrated in nonlinear test problems of statics and dynamics.


Author(s):  
Peng Lan ◽  
Yaqi Cui ◽  
Zuqing Yu

A new absolute nodal coordinate formulation thin plate tire model, which includes the damping property of the rubber and an efficient tire–road contact algorithm is given. The fractional derivative viscosity constitutive model is proposed in this paper based on the complete form of the absolute nodal coordinate formulation thin plate element, which is created to describe the stress-free initially curved configuration of the tire. A new contact algorithm based on the integration of the contact pressure within the contact patch is developed. By solving the simultaneous equations of the tire geometry and road profile, the dimensionless coordinates for the boundary points of contact patch could be obtained directly. A self-adaptable Gauss integration strategy is introduced to perform the integration of the contact pressure within the varying region, so the integration could reach high precision by few integration points. The calculation of contact force is determined based on penalty method and smoothed Coulomb friction model. The application of fractional derivative viscosity on the absolute nodal coordinate formulation thin plate element is demonstrated by numerical results. A pressurized Golf tire model is given to show the feasibility of the proposed tire–ground contact algorithm.


Author(s):  
Carmine M. Pappalardo ◽  
Zuqing Yu ◽  
Xiaoshun Zhang ◽  
Ahmed A. Shabana

In this paper, a rational absolute nodal coordinate formulation (RANCF) thin plate element is developed and its use in the analysis of curved geometry is demonstrated. RANCF finite elements are the rational counterpart of the nonrational absolute nodal coordinate formulation (ANCF) finite elements which employ rational polynomials as basis or blending functions. RANCF finite elements can be used in the accurate geometric modeling and analysis of flexible continuum bodies with complex geometrical shapes that cannot be correctly described using nonrational finite elements. In this investigation, the weights, which enter into the formulation of the RANCF finite element and form an additional set of geometric parameters, are assumed to be nonzero constants in order to accurately represent the initial geometry and at the same time preserve the desirable ANCF features, including a constant mass matrix and zero centrifugal and Coriolis generalized inertia forces. A procedure for defining the control points and weights of a Bezier surface defined in a parametric form is used in order to be able to efficiently create RANCF/ANCF FE meshes in a straightforward manner. This procedure leads to a set of linear algebraic equations whose solution defines the RANCF coordinates and weights without the need for an iterative procedure. In order to be able to correctly describe the ANCF and RANCF gradient deficient FE geometry, a square matrix of position vector gradients is formulated and used to calculate the FE elastic forces. As discussed in this paper, the proposed finite element allows for describing exactly circular and conic sections and can be effectively used in the geometry and analysis modeling of multibody system (MBS) components including tires. The proposed RANCF finite element is compared with other nonrational ANCF plate elements. Several numerical examples are presented in order to demonstrate the use of the proposed RANCF thin plate element. In particular, the FE models of a set of rational surfaces, which include conic sections and tires, are developed.


Author(s):  
Marko K. Matikainen ◽  
Aki M. Mikkola

In this study, the improved description of elastic forces for the absolute nodal coordinate based plate element is introduced. The absolute nodal coordinate formulation, which utilizes global displacements and slope coordinates as nodal variables, can be used in large rotation and deformation dynamic analysis of beam and plate structures. The formulation avoids difficulties that arise when a rotation is interpolated in three-dimensional applications. In the absolute nodal coordinate formulation, a continuum mechanics approach has become the dominating procedure when elastic forces are defined. It has recently been perceived, however, that the continuum mechanics based absolute nodal coordinate elements suffer from serious shortcomings, including Poisson’s locking and poor convergence rate. These problems can be circumvented by modifying the displacement field of a finite element in the definition of elastic forces. This allows the use of the mixed type interpolation technique, leading to accurate and efficient finite element formulations. This approach has been previously applied to two- and three-dimensional absolute nodal coordinate based finite elements. In this study, the improved approach for elastic forces is extended to the absolute nodal coordinate plate element. The introduced plate element is compared in static examples to the continuum mechanics based absolute nodal coordinate plate element, as well as to commercial finite element software.


2003 ◽  
Vol 125 (2) ◽  
pp. 342-350 ◽  
Author(s):  
Ahmed A. Shabana ◽  
Aki M. Mikkola

A large rigid body rotation of a finite element can be described by rotating the axes of the element coordinate system or by keeping the axes unchanged and change the slopes or the position vector gradients. In the first method, the definition of the local element parameters (spatial coordinates) changes with respect to a body or a global coordinate system. The use of this method will always lead to a nonlinear mass matrix and non-zero centrifugal and Coriolis forces. The second method, in which the axes of the element coordinate system do not rotate with respect to the body or the global coordinate system, leads to a constant mass matrix and zero centrifugal and Coriolis forces when the absolute nodal coordinate formulation is used. This important property remains in effect even in the case of flexible bodies with slope discontinuities. The concept employed to accomplish this goal resembles the concept of the intermediate element coordinate system previously adopted in the finite element floating frame of reference formulation. It is shown in this paper that the absolute nodal coordinate formulation that leads to exact representation of the rigid body dynamics can be effectively used in the analysis of complex structures with slope discontinuities. The analysis presented in this paper also demonstrates that objectivity is not an issue when the absolute nodal coordinate formulation is used due to the fact that this formulation automatically accounts for the proper coordinate transformations.


2005 ◽  
Vol 1 (2) ◽  
pp. 103-108 ◽  
Author(s):  
Aki M. Mikkola ◽  
Marko K. Matikainen

Dynamic analysis of large rotation and deformation can be carried out using the absolute nodal coordinate formulation. This formulation, which utilizes global displacements and slope coordinates as nodal variables, make it possible to avoid the difficulties that arise when a rotation is interpolated in three-dimensional applications. In the absolute nodal coordinate formulation, a continuum mechanics approach has become the dominating procedure when elastic forces are defined. It has recently been perceived, however, that the continuum mechanics based absolute nodal coordinate elements suffer from serious shortcomings, including Poisson’s locking and poor convergence rate. These problems can be circumvented by modifying the displacement field of a finite element in the definition of elastic forces. This allows the use of the mixed type interpolation technique, leading to accurate and efficient finite element formulations. This approach has been previously applied to two- and three-dimensional absolute nodal coordinate based finite elements. In this study, the improved approach for elastic forces is extended to the absolute nodal coordinate plate element. The introduced plate element is compared in static examples to the continuum mechanics based absolute nodal coordinate plate element, as well as to commercial finite element software. A simple dynamic analysis is performed using the introduced element in order to demonstrate the capability of the element to conserve energy.


Author(s):  
Daniel Garci´a-Vallejo ◽  
Hiroyuki Sugiyama ◽  
Ahmed A. Shabana

In this paper, the limitations of the linear elasticity finite element solutions in describing the coupling between the extensional and bending displacements are discussed. The fact that incorrect unstable solutions are obtained for models with more than one finite element using the linear elasticity theory motivates the analytical study of the rotating beam presented in this paper. It is shown, as documented in the literature, that the instability of the incorrect solution is directly related to the singularity of the stiffness matrix, and such an instability occurs when the angular velocity reaches the first bending fundamental frequency of the beam. The increase in the number of finite elements only leads to an increase of the critical speed. Crucial in the analysis presented in this paper is the fact that the mass matrix and the form of the elastic forces obtained using the absolute nodal coordinate formulation remain the same under orthogonal coordinate transformation. The absolute nodal coordinate formulation, in contrast to conventional finite element formulations, does account for the effect of the coupling between bending and extension. A similar concept can be incorporated into the finite element floating frame of reference formulation in order to introduce coupling between the axial and bending displacements. Nonetheless, when the linear theory of elasticity is used and no special measures are taken to account for the coupling effect as proposed in the literature, there always exists a critical velocity regardless of the number of finite elements used.


1999 ◽  
Vol 122 (4) ◽  
pp. 498-507 ◽  
Author(s):  
Marcello Campanelli ◽  
Marcello Berzeri ◽  
Ahmed A. Shabana

Many flexible multibody applications are characterized by high inertia forces and motion discontinuities. Because of these characteristics, problems can be encountered when large displacement finite element formulations are used in the simulation of flexible multibody systems. In this investigation, the performance of two different large displacement finite element formulations in the analysis of flexible multibody systems is investigated. These are the incremental corotational procedure proposed in an earlier article (Rankin, C. C., and Brogan, F. A., 1986, ASME J. Pressure Vessel Technol., 108, pp. 165–174) and the non-incremental absolute nodal coordinate formulation recently proposed (Shabana, A. A., 1998, Dynamics of Multibody Systems, 2nd ed., Cambridge University Press, Cambridge). It is demonstrated in this investigation that the limitation resulting from the use of the infinitesmal nodal rotations in the incremental corotational procedure can lead to simulation problems even when simple flexible multibody applications are considered. The absolute nodal coordinate formulation, on the other hand, does not employ infinitesimal or finite rotation coordinates and leads to a constant mass matrix. Despite the fact that the absolute nodal coordinate formulation leads to a non-linear expression for the elastic forces, the results presented in this study, surprisingly, demonstrate that such a formulation is efficient in static problems as compared to the incremental corotational procedure. The excellent performance of the absolute nodal coordinate formulation in static and dynamic problems can be attributed to the fact that such a formulation does not employ rotations and leads to exact representation of the rigid body motion of the finite element. [S1050-0472(00)00604-8]


Sign in / Sign up

Export Citation Format

Share Document