Numerical modeling of corrosion pit propagation using the combined extended finite element and level set method

2014 ◽  
Vol 54 (3) ◽  
pp. 613-627 ◽  
Author(s):  
Ravindra Duddu
2017 ◽  
Vol 20 (K3) ◽  
pp. 119-125
Author(s):  
Bang Kim Tran ◽  
Huy The Tran ◽  
Tinh Quoc Bui ◽  
Thien Tich Truong

Functionally graded material is of great importance in many engineering problems. Here the effect of multiple random inclusions in functionally graded material (FGM) is investigated in this paper. Since the geometry of entire model becomes complicated when many inclusions with different sizes appearing in the body, a methodology to model those inclusions without meshing the internal boundaries is proposed. The numerical method couples the level set method to the extended finite-element method (X-FEM). In the X-FEM, the finite-element approximation is enriched by additional functions through the notion of partition of unity. The level set method is used for representing the location of random inclusions. Numerical examples are presented to demonstrate the accuracy and potential of this technique. The obtained results are compared with available refered results and COMSOL, the finite element method software.


Author(s):  
A. S. Vagbharathi ◽  
S. Gopalakrishnan

Mass balance between metal and electrolytic solution, separated by a moving interface, in stable pit growth results in a set of governing equations which are solved for concentration field and interface position (pit boundary evolution). The interface experiences a jump discontinuity in metal concentration. The extended finite-element model (XFEM) handles this jump discontinuity by using discontinuous-derivative enrichment formulation, eliminating the requirement of using front conforming mesh and re-meshing after each time step as in the conventional finite-element method. However, prior interface location is required so as to solve the governing equations for concentration field for which a numerical technique, the level set method, is used for tracking the interface explicitly and updating it over time. The level set method is chosen as it is independent of shape and location of the interface. Thus, a combined XFEM and level set method is developed in this paper. Numerical analysis for pitting corrosion of stainless steel 304 is presented. The above proposed model is validated by comparing the numerical results with experimental results, exact solutions and some other approximate solutions. An empirical model for pitting potential is also derived based on the finite-element results. Studies show that pitting profile depends on factors such as ion concentration, solution pH and temperature to a large extent. Studying the individual and combined effects of these factors on pitting potential is worth knowing, as pitting potential directly influences corrosion rate.


2008 ◽  
Vol 74 (5) ◽  
pp. 848-870 ◽  
Author(s):  
Ravindra Duddu ◽  
Stéphane Bordas ◽  
David Chopp ◽  
Brian Moran

2014 ◽  
Vol 891-892 ◽  
pp. 254-260 ◽  
Author(s):  
A.S. Vagbharathi ◽  
Srinivasan Gopalakrishnan

Mass balance between metal and electrolytic solution, separated by a moving interface, in stable pit growth results in a set of governing equations which are solved for concentration field and interface position (pit boundary evolution), which requires only three inputs, namely the solid metal concentration, saturation concentration of the dissolved metal ions and diffusion coefficient. A combined eXtended Finite Element Model (XFEM) and level set method is developed in this paper. The extended finite element model handles the jump discontinuity in the metal concentrations at the interface, by using discontinuous-derivative enrichment formulation for concentration discontinuity at the interface. This eliminates the requirement of using front conforming mesh and re-meshing after each time step as in conventional finite element method. A numerical technique known as level set method tracks the position of the moving interface and updates it over time. Numerical analysis for pitting corrosion of stainless steel 304 is presented. The above proposed method is validated by comparing the numerical results with experimental results, exact solutions and some other approximate solutions.


2014 ◽  
Vol 100 ◽  
pp. 138-154 ◽  
Author(s):  
Lanhao Zhao ◽  
Jia Mao ◽  
Xin Bai ◽  
Xiaoqing Liu ◽  
Tongchun Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document