rtm process
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 23)

H-INDEX

16
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5918
Author(s):  
Haseung Lee ◽  
Kyungwoo Jung ◽  
Hyunbum Park

In this paper, structural design and analysis of a composite boat hull was performed. A resin transfer molding manufacturing method was adopted for manufacturing the composite boat hull. The RTM process is an advanced composite manufacturing method that allows a much higher quality product than the hand lay-up process, and less manufacturing cost compared to the autoclave method. Therefore, the RTM manufacturing method was adopted. The mechanical properties of the various aramid fibers and polyester resin were investigated. Based on this, structural design of boat hull was performed using aramid fiber or polyester. After structural design, the optimized resin infusion analysis for RTM manufacturing method was performed. Through the resin infusion analysis, it is confirmed that the designed location of resin injection and outlet is acceptable for manufacturing.


2021 ◽  
Author(s):  
AADITYA SURATKAR ◽  
JOHN MONTESANO ◽  
JEFFREY WOOD

An experimental study was performed to characterize the evolution of damage in a unidirectional Non-Crimp Fabric (NCF) carbon fiber/snap-cure epoxy composite under in-plane quasi-static tensile loads. The NCF composites were manufactured using a High Pressure-Resin Transfer Molding (HP-RTM) process and comprised a fast-curing epoxy resin and heavy tow unidirectional carbon fiber NCF layers. Laminates with stacking sequences [0/±45/90] and [±45/0 ] were subjected to axial and transverse quasi-static tensile loads and an in-situ Edge replication (ER) technique was used to capture the damage evolution at predefined intervals. An imprint of the composite microstructure, as observed on the edges of a test coupon, was created on a cellulose acetate replicating tape, which was then observed under the microscope. The onset and progression of ply cracks and delamination, which were the two major damage modes present, were quantified and correlated with the stress-strain curves and changes in stiffness. The influence of stacking sequence and ply thickness are also captured.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3145
Author(s):  
Moritz Salzmann ◽  
Yannick Blößl ◽  
Andrea Todorovic ◽  
Ralf Schledjewski

Near-infrared spectroscopy (NIR) was implemented in the resin transfer molding (RTM) process to inline monitor the degree of curing of a bio-based epoxy resin, which consists of epoxidized linseed oil (resin) and citric acid (hardener), respectively. A NIR micro-spectrometer was used for the development of robust calibration models using partial least squares (PLS) regression. Since the micro-spectrometer offers a smaller wavelength range compared with conventional NIR devices, and typical absorbance peaks are not directly involved in the captured data range, the results show new insights for the utilization of this technology. Different pre-treatments of the spectroscopic data have been tested, starting with different reference spectra, i.e., uncured resin and polytetrafluorethylene (PTFE), and followed by chemometrical algorithms. As a reference method for the degree of curing, direct current (DC) supported by differential scanning calorimetry (DSC) was used. The results show the potential of these cost-efficient and compact NIR micro-spectrometers for the intended inline monitoring purpose to gain relevant information feedback during the process.


2021 ◽  
Author(s):  
Jie Wang ◽  
Peng Wang ◽  
Nahiène Hamila ◽  
Philippe Boisse

During the forming stage in the RTM process, deformations and orientations of yarns at the mesoscopic scale are essential to evaluate mechanical behaviors of final composite products and calculate the permeability of the reinforcement. However, due to the high computational cost, it is very difficult to carry out a mesoscopic draping simulation for the entire reinforcement. In this paper, a macro-meso scale simulation of composite reinforcements is presented in order to predict mesoscopic deformations of the fabric in a reasonable calculation time. The proposed multi-scale method allows linking the macroscopic simulation of the reinforcement with the mesoscopic modelling of the RVE through a macromeso embedded analysis. On the base of macroscopic simulations using a hyperelastic constitutive law of the reinforcement, an embedded mesoscopic geometry is first deduced from the macroscopic simulation of the draping. To overcome the inconvenience of the macro-meso embedded solution which leads to unreal excessive yarn extensions, local mesoscopic simulations based on the embedded analysis are carried out on a single RVE by defining specific boundary conditions. Finally, the multi-scale forming simulations are investigated in comparison with the experimental results, illustrating the efficiency of the proposed approach, in terms of accuracy and CPU time.


2021 ◽  
pp. 002199832098760
Author(s):  
Selina Zhao ◽  
William R Rodgers ◽  
Bradley Frieberg ◽  
Golam Newaz

High Pressure Resin Transfer Molding (HP-RTM) is a new variant of composite Resin Transfer Molding (RTM) process that enables a short cycle time and a high composite strength to weight ratio, thus presents a great potential for fabricating automotive structural parts. Due to the high injection pressure, fiber-tow washout is becoming one of the major defects which impact the properties of composite materials. To predict and mitigate the fiber-tow washout problem, approaches of both experimental process optimization and computational prediction are essential. In this paper, an experimental study of fiber-tow washout is undertaken to determine the flow injection limits beyond which the preform deformation can be observed at various fiber volume fractions. A feasibility map is developed for a specific fabric and resin combination. It provides a means to determine the injection rates and fiber volume fractions to fabricate a quality part with minimal in-plane fiber washout due to the hydrodynamically flow-induced force during the HP-RTM process.


2021 ◽  
Vol 5 (1) ◽  
pp. 12
Author(s):  
Janek Herzog ◽  
Rainer Wendel ◽  
Peter Weidler ◽  
Michael Wilhelm ◽  
Philipp Rosenberg ◽  
...  

The use of fiber reinforced plastics (FRPs) has significant potential to reduce the weight of components. As regards the sustainability of these components, thermoplastic matrices offer more potential for recycling than thermoset ones. A possible manufacturing process for the production of thermoplastic FRPs is thermoplastic resin transfer molding (T-RTM). In this very moisture-sensitive process, ε-caprolactam in addition to an activator and catalyst polymerizes anionically to polyamide 6 (aPA6). The anionic polymerization of aPA6 is slowed down or even completely blocked by the presence of water. This study analyses the sorption behavior of the matrix, fiber, binder and core materials for the production of anionic polyamide 6 composites, which are processed in the thermoplastic RTM process. Water vapor sorption measurements are used to determine the adsorption and desorption behavior of the materials. The maximum moisture loading of the materials provides information about the water adsorption capacity of the material. This knowledge is crucial for correct handling of the materials to achieve a fast process and good properties of the final product.


Author(s):  
N Efimov-Soini ◽  
M Kiauka ◽  
A Borovkov

2020 ◽  
Vol 55 (1) ◽  
pp. 3-15
Author(s):  
Y Djebara ◽  
A Imad ◽  
A Saouab ◽  
T Kanit

The objective of this paper is to develop a global modelling approach, that simulates both the resin transfer molding (RTM) manufacturing and the prediction of the effective thermal conductivity (ETC) of a carbon–cpoxy (CE) laminated composite reinforced with particles. This numerical approach is based on two main stages. First, a numerical simulation of the suspension flow and the filtration of the charges during the RTM process. A method, for simulating the flow of a resin, loaded with particles in suspension through a fibrous medium, considering its double porosity scale, has been proposed. It is based on the description of the flow by Stokes–Darcy coupling, filtration phenomenon and particle dynamics. Secondly, the ETC of the composite thus produced is evaluated using a numerical homogenisation technique, considering the spherical particles inserted into the carbon–epoxy laminated composite. These obtained results have shown that, the incorporation of particles in the laminated composite leads to a significant increase in their effective thermal conductivity, which depends on their thermal conductivity. Finally, a simple linear thermal model has been proposed to predict the effective thermal conductivity of the composite carbon–epoxy–particles, as a function of that of the base composite carbon–epoxy and that of the particles.


Sign in / Sign up

Export Citation Format

Share Document